Deep Convolutional Neural Networks for Image Reconstruction and Damage Recognition in UAV Bridge Inspection
et
26 mars 2025
À propos de cet article
Publié en ligne: 26 mars 2025
Reçu: 27 oct. 2024
Accepté: 23 févr. 2025
DOI: https://doi.org/10.2478/amns-2025-0811
Mots clés
© 2025 Shun Wang et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Image reconstruction comparison
Number | DCNN | BP | CNN | FNN | ||||
---|---|---|---|---|---|---|---|---|
Acc | Time/s | Acc | Time/s | Acc | Time/s | Acc | Time/s | |
1 | 0.976 | 0.288 | 0.837 | 7.772 | 0.778 | 13.771 | 0.754 | 19.265 |
2 | 0.965 | 0.066 | 0.747 | 6.232 | 0.819 | 14.257 | 0.632 | 24.307 |
3 | 0.970 | 0.071 | 0.909 | 7.430 | 0.779 | 13.28 | 0.726 | 23.820 |
4 | 0.985 | 0.670 | 0.832 | 7.237 | 0.792 | 15.718 | 0.639 | 19.348 |
5 | 0.998 | 0.793 | 0.789 | 6.208 | 0.823 | 13.643 | 0.641 | 18.086 |
6 | 0.993 | 0.318 | 0.877 | 7.765 | 0.795 | 11.642 | 0.642 | 15.660 |
7 | 0.998 | 0.309 | 0.822 | 5.572 | 0.795 | 12.924 | 0.703 | 20.258 |
8 | 0.979 | 0.059 | 0.768 | 5.949 | 0.769 | 14.637 | 0.696 | 24.699 |
9 | 0.99 | 0.590 | 0.760 | 7.991 | 0.790 | 15.454 | 0.753 | 19.772 |
10 | 0.985 | 0.404 | 0.890 | 5.503 | 0.738 | 14.562 | 0.625 | 16.051 |
11 | 0.977 | 0.876 | 0.745 | 7.476 | 0.771 | 11.004 | 0.665 | 16.611 |
12 | 0.980 | 0.161 | 0.838 | 6.495 | 0.742 | 12.908 | 0.680 | 20.618 |
13 | 0.999 | 0.702 | 0.762 | 5.825 | 0.762 | 15.696 | 0.735 | 24.489 |
14 | 0.985 | 0.779 | 0.812 | 6.284 | 0.780 | 15.526 | 0.706 | 17.989 |
15 | 0.981 | 0.456 | 0.844 | 5.138 | 0.702 | 14.072 | 0.686 | 23.111 |
16 | 0.963 | 0.314 | 0.842 | 6.920 | 0.729 | 14.944 | 0.678 | 20.063 |
17 | 0.986 | 0.779 | 0.906 | 7.680 | 0.756 | 13.074 | 0.756 | 20.746 |
18 | 0.964 | 0.203 | 0.784 | 7.806 | 0.766 | 11.540 | 0.712 | 18.323 |
19 | 0.971 | 0.733 | 0.816 | 6.618 | 0.707 | 12.782 | 0.714 | 23.987 |
20 | 0.982 | 0.599 | 0.873 | 7.869 | 0.710 | 14.328 | 0.644 | 24.188 |
Mean | 0.981 | 0.459 | 0.823 | 6.789 | 0.765 | 13.788 | 0.689 | 20.570 |
Recognition results based on deflection damage index
Position | Damage degree/% | Recognition result | Recognition rate/% | Position | Damage degree/% | Recognition result | Recognition rate |
---|---|---|---|---|---|---|---|
1 | 0 | 1 | 100 | 6 | 20 | 6 | 100 |
0 | 1 | 100 | 40 | 6 | 100 | ||
0 | 1 | 100 | 60 | 6 | 100 | ||
0 | 1 | 100 | 80 | 6 | 100 | ||
2 | 20 | 2 | 100 | 7 | 20 | 1 | 90.82 |
40 | 2 | 100 | 40 | 7 | 100 | ||
60 | 2 | 100 | 60 | 5 | 91.48 | ||
80 | 2 | 100 | 80 | 8 | 93.56 | ||
3 | 20 | 3 | 100 | 8 | 20 | 1 | 92.38 |
40 | 3 | 100 | 40 | 7 | 95.66 | ||
60 | 3 | 100 | 60 | 8 | 100 | ||
80 | 3 | 100 | 80 | 8 | 100 | ||
4 | 20 | 1 | 92.17 | 9 | 20 | 9 | 100 |
40 | 4 | 100 | 40 | 9 | 100 | ||
60 | 4 | 100 | 60 | 9 | 100 | ||
80 | 4 | 100 | 80 | 9 | 100 | ||
5 | 20 | 1 | 92.36 | 10 | 20 | 10 | 100 |
40 | 5 | 100 | 40 | 10 | 100 | ||
60 | 5 | 100 | 60 | 10 | 100 | ||
80 | 5 | 100 | 80 | 10 | 100 |
The bridge image peak signal-to-noise ratio of different methods
Image number | Ours | A | B | C |
---|---|---|---|---|
1 | 45.42 | 15.91 | 21.53 | 13.17 |
2 | 55.67 | 27.47 | 26.06 | 16.7 |
3 | 46.94 | 23.74 | 12.98 | 29.82 |
4 | 49.74 | 26.93 | 16.75 | 24.65 |
5 | 47.12 | 15.44 | 16.27 | 12.55 |
6 | 51.04 | 26.50 | 13.21 | 27.25 |
7 | 58.94 | 27.31 | 26.79 | 27.97 |
8 | 48.83 | 28.95 | 27.93 | 13.89 |
9 | 46.40 | 17.68 | 26.87 | 26.13 |
10 | 48.62 | 26.79 | 26.10 | 16.86 |
11 | 53.62 | 25.11 | 19.46 | 12.93 |
12 | 52.84 | 24.73 | 27.26 | 14.15 |
13 | 56.60 | 20.35 | 14.08 | 18.59 |
14 | 59.39 | 16.52 | 22.49 | 17.32 |
15 | 48.46 | 26.57 | 11.67 | 22.86 |
16 | 51.31 | 18.35 | 26.02 | 26.10 |
17 | 55.70 | 23.85 | 20.18 | 27.9 |
18 | 55.58 | 20.57 | 25.56 | 28.78 |
19 | 46.51 | 15.25 | 17.84 | 19.74 |
20 | 46.65 | 16.01 | 26.57 | 28.13 |
Comparison of SSIM results
Image number | Ours | A | B | C |
---|---|---|---|---|
1 | 0.987 | 0.777 | 0.683 | 0.750 |
2 | 0.984 | 0.770 | 0.678 | 0.754 |
3 | 0.958 | 0.788 | 0.682 | 0.745 |
4 | 0.975 | 0.753 | 0.656 | 0.747 |
5 | 0.987 | 0.764 | 0.669 | 0.751 |
6 | 0.987 | 0.766 | 0.661 | 0.755 |
7 | 0.984 | 0.790 | 0.664 | 0.737 |
8 | 0.988 | 0.782 | 0.662 | 0.760 |
9 | 0.969 | 0.780 | 0.667 | 0.732 |
10 | 0.987 | 0.769 | 0.666 | 0.760 |
11 | 0.963 | 0.773 | 0.679 | 0.743 |
12 | 0.964 | 0.774 | 0.645 | 0.730 |
13 | 0.966 | 0.764 | 0.683 | 0.723 |
14 | 0.975 | 0.786 | 0.657 | 0.730 |
15 | 0.967 | 0.763 | 0.641 | 0.728 |
16 | 0.983 | 0.775 | 0.660 | 0.749 |
17 | 0.952 | 0.777 | 0.644 | 0.742 |
18 | 0.973 | 0.769 | 0.681 | 0.746 |
19 | 0.969 | 0.755 | 0.645 | 0.741 |
20 | 0.956 | 0.759 | 0.686 | 0.764 |
Recognition results based on acceleration damage indicators
Position | Damage degree/% | Recognition result | Recognition rate/% | Position | Damage degree/% | Recognition result | Recognition rate |
---|---|---|---|---|---|---|---|
1 | 0 | 1 | 100 | 6 | 20 | 6 | 100 |
0 | 1 | 100 | 40 | 6 | 100 | ||
0 | 1 | 100 | 60 | 6 | 100 | ||
0 | 2 | 99.38 | 80 | 2 | 91.64 | ||
2 | 20 | 1 | 93.74 | 7 | 20 | 7 | 100 |
40 | 2 | 100 | 40 | 1 | 90.39 | ||
60 | 6 | 90.62 | 60 | 7 | 100 | ||
80 | 3 | 95.84 | 80 | 7 | 100 | ||
3 | 20 | 7 | 90.71 | 8 | 20 | 8 | 100 |
40 | 3 | 100 | 40 | 2 | 91.26 | ||
60 | 3 | 100 | 60 | 8 | 100 | ||
80 | 3 | 100 | 80 | 8 | 100 | ||
4 | 20 | 4 | 100 | 9 | 20 | 9 | 100 |
40 | 5 | 94.76 | 40 | 9 | 100 | ||
60 | 4 | 100 | 60 | 9 | 100 | ||
80 | 4 | 100 | 80 | 9 | 100 | ||
5 | 20 | 2 | 92.83 | 10 | 20 | 9 | 98.47 |
40 | 3 | 93.46 | 40 | 10 | 100 | ||
60 | 5 | 100 | 60 | 10 | 100 | ||
80 | 1 | 90.17 | 80 | 10 | 100 |