Accès libre

Multi-scale spatio-temporal data modelling and brain-like intelligent optimisation strategies in power equipment operation and inspection

, , , , ,  et   
03 févr. 2025
À propos de cet article

Citez
Télécharger la couverture

Figure 1.

The sample distribution of the fusion eigenvalue
The sample distribution of the fusion eigenvalue

Figure 2.

The GPNN generates the fault sample sequence
The GPNN generates the fault sample sequence

Figure 3.

Change of accuracy rate and loss value during training
Change of accuracy rate and loss value during training

Figure 4.

Comparison results of fault diagnosis model
Comparison results of fault diagnosis model

The process data of FID

Type 50 100 200 500 Min value
Nor 263.08 104.23 33.43 37.24 33.43
IR 285.31 112.58 36.04 35.89 35.89
OR 272.64 80.21 51.71 31.27 31.27
Cage 272.11 98.96 39.92 25.35 25.35
IR-OR 301.17 116.64 30.58 32.58 30.58
TCF 248.05 102.42 40.65 21.16 21.16

Partial fusion eigenvectors

Mode No. PCA1 PCA2 PCA3 PCA4 PCA5 PCA6
Nor 1 4218.51 -425.69 469.62 65.24 22.37 -9.58
2 4369.25 -334.14 285.26 158.37 -1.67 -3.67
400 4301.48 -438.49 468.04 115.12 22.37 -1.54
IR 1 -1024.74 -1135.24 -421.56 356.37 -2.85 -2.68
2 -1158.37 -1166.34 -357.08 285.47 -28.74 16.76
400 -2368.45 -1108.58 148.27 206.54 -29.24 17.51
OR 1 -246.37 -583.24 -390.54 -108.03 -78.51 32.28
2 241.15 -556.13 -198.47 -283.51 -62.35 -1.19
400 -438.24 -250.45 -278.42 -175.42 -81.49 28.94
Cage 1 -1232.74 4538.92 546.84 84.95 -58.51 36.51
2 -22.51 1847.37 -661.52 105.24 -38.42 4.47
400 -505.75 2347.78 -88.18 -233.51 -56.43 5.74
IR-OR 1 885.42 -173.27 -685.52 -80.35 48.53 -65.28
2 336.74 -246.81 -473.51 -37.24 135.82 -13.27
400 -303.16 312.33 -228.09 -33.08 162.68 -71.18
TCF 1 -2551.34 -1265.67 695.87 -143.27 3.85 -31.33
2 -1247.12 -1431.08 396.76 -31.06 -7.42 -21.04
400 -2351.39 -1435.87 485.27 -17.24 7.38 -21.28