Accès libre

Deep Learning-Based Prediction and Optimized Path Planning for Sports Athletes’ Movement Trajectories

  
25 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

Sarker, I. H. (2021). Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN computer science, 2(6), 420. Search in Google Scholar

Zuo, C., Qian, J., Feng, S., Yin, W., Li, Y., Fan, P., ... & Chen, Q. (2022). Deep learning in optical metrology: a review. Light: Science & Applications, 11(1), 1-54. Search in Google Scholar

Hatcher, W. G., & Yu, W. (2018). A survey of deep learning: Platforms, applications and emerging research trends. IEEE access, 6, 24411-24432. Search in Google Scholar

Bisong, E. (2019). Building machine learning and deep learning models on Google cloud platform (pp. 59-64). Berkeley, CA: Apress. Search in Google Scholar

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. Search in Google Scholar

Wu, E., & Koike, H. (2020, April). Futurepong: Real-time table tennis trajectory forecasting using pose prediction network. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-8). Search in Google Scholar

Duan, S., Meng, L., Ma, D., & Mi, L. (2021). Application Research on Roller Skater Detection, Tracking, and Trajectory Prediction Based on Video Stream. Scientific Programming, 2021. Search in Google Scholar

Zhu, P., & Sun, F. (2020). Sports athletes’ performance prediction model based on machine learning algorithm. In International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019: Applications and Techniques in Cyber Intelligence 7 (pp. 498-505). Springer International Publishing. Search in Google Scholar

Den Hartigh, R. J., Niessen, A. S. M., Frencken, W. G., & Meijer, R. R. (2018). Selection procedures in sports: Improving predictions of athletes’ future performance. European journal of sport science, 18(9), 1191-1198. Search in Google Scholar

Owens, C. B., de Boer, C., Gennari, G., Broersen, R., Pel, J. J., Miller, B., ... & De Zeeuw, C. I. (2018). Early trajectory prediction in elite athletes. The Cerebellum, 17, 766-776. Search in Google Scholar

Hauri, S., Djuric, N., Radosavljevic, V., & Vucetic, S. (2021). Multi-modal trajectory prediction of nba players. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1640-1649). Search in Google Scholar

Teranishi, M., Tsutsui, K., Takeda, K., & Fujii, K. (2022, September). Evaluation of creating scoring opportunities for teammates in soccer via trajectory prediction. In International Workshop on Machine Learning and Data Mining for Sports Analytics (pp. 53-73). Cham: Springer Nature Switzerland. Search in Google Scholar

Suda, S., Makino, Y., & Shinoda, H. (2019, March). Prediction of volleyball trajectory using skeletal motions of setter player. In Proceedings of the 10th Augmented Human International Conference 2019 (pp. 1-8). Search in Google Scholar

AlShami, A., Boult, T., & Kalita, J. (2023). Pose2Trajectory: Using transformers on body pose to predict tennis player’s trajectory. Journal of Visual Communication and Image Representation, 97, 103954. Search in Google Scholar

Naik, B. T., & Hashmi, M. F. (2023). LSTM-BEND: Predicting the trajectories of basketball. IEEE Sensors Letters, 7(4), 1-4. Search in Google Scholar

H. Alaeiyan, M. R. Mosavi & A. Ayatollahi. (2024). Improving the performance of GPS/INS integration during GPS outage with incremental regularized LSTM learning. Alexandria Engineering Journal137-155. Search in Google Scholar

Fenghao Chen, Xiaoyong Sun, Yuchen Wang, Zhiyi Xu & Weifeng Ma. (2024). Adaptive graph neural network for traffic flow prediction considering time variation. Expert Systems With Applications(PB), 124430-124430. Search in Google Scholar

Qingqing Hong,Yue Zhu,Wei Liu,Tianyu Ren,Changrong Shi,Zhixin Lu... & Changwei Tan. (2024). A segmentation network for farmland ridge based on encoder-decoder architecture in combined with strip pooling module and ASPP. Frontiers in plant science1328075-1328075. Search in Google Scholar

Xiaoqing Zhong,Weifeng Zhong,Zhenjia Lin,Guoxu Zhou,Loi Lei Lai,Shengli Xie & Jinyue Yan. (2024). Localized electricity and carbon allowance management for interconnected discrete manufacturing systems considering algorithmic and physical feasibility. Applied Energy123791-123791. Search in Google Scholar

Meixiang Chen, Zhongpeng Yang & Qinghua Chen. (2024). The uniqueness of expression for generalized quadratic matrices. Open Mathematics(1). Search in Google Scholar