Accès libre

Empirical analysis of monthly electricity consumption prediction in manufacturing industry using machine learning techniques

, , ,  et   
11 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

Işık, G., Öğüt, H., & Mutlu, M. (2023). Deep learning based electricity demand forecasting to minimize the cost of energy imbalance: A real case application with some fortune 500 companies in Türkiye. Engineering Applications of Artificial Intelligence, 118, 105664. Search in Google Scholar

Divina, F., Garcia Torres, M., Gomez Vela, F. A., & Vazquez Noguera, J. L. (2019). A comparative study of time series forecasting methods for short term electric energy consumption prediction in smart buildings. Energies, 12(10), 1934. Search in Google Scholar

Al-Rajab, M., & Loucif, S. (2024). Sustainable EnergySense: a predictive machine learning framework for optimizing residential electricity consumption. Discover Sustainability, 5(1), 55. Search in Google Scholar

Klyuev, R. V., Morgoev, I. D., Morgoeva, A. D., Gavrina, O. A., Martyushev, N. V., Efremenkov, E. A., & Mengxu, Q. (2022). Methods of forecasting electric energy consumption: A literature review. Energies, 15(23), 8919. Search in Google Scholar

Yildiz, B., Bilbao, J. I., & Sproul, A. B. (2017). A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renewable and Sustainable Energy Reviews, 73, 1104-1122. Search in Google Scholar

Pannakkong, W., Harncharnchai, T., & Buddhakulsomsiri, J. (2022). Forecasting daily electricity consumption in Thailand using regression, artificial neural network, support vector machine, and hybrid models. Energies, 15(9), 3105. Search in Google Scholar

Kaboli, S. H. A., Fallahpour, A., Selvaraj, J., & Rahim, N. A. (2017). Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming. Energy, 126, 144-164. Search in Google Scholar

Heydari, A., Astiaso Garcia, D., Keynia, F., Bisegna, F., & De Santoli, L. (2019). Hybrid intelligent strategy for multifactor influenced electrical energy consumption forecasting. Energy Sources, Part B: Economics, Planning, and Policy, 14(10-12), 341-358. Search in Google Scholar

Li, J., Luo, Y., & Wei, S. (2022). Long-term electricity consumption forecasting method based on system dynamics under the carbon-neutral target. Energy, 244, 122572. Search in Google Scholar

Solyali, D. (2020). A comparative analysis of machine learning approaches for short-/long-term electricity load forecasting in Cyprus. Sustainability, 12(9), 3612. Search in Google Scholar

Shapi, M. K. M., Ramli, N. A., & Awalin, L. J. (2021). Energy consumption prediction by using machine learning for smart building: Case study in Malaysia. Developments in the Built Environment, 5, 100037. Search in Google Scholar

Şahin, U., Ballı, S., & Chen, Y. (2021). Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods. Applied Energy, 302, 117540. Search in Google Scholar

Klyuev, R. V., Morgoeva, A. D., Gavrina, O. A., Bosikov, I. I., & Morgoev, I. D. (2023). Forecasting planned electricity consumption for the united power system using machine learning. Записки Горного института, (261 (eng)), 392-402. Search in Google Scholar

Chen, G., Hu, Q., Wang, J., Wang, X., & Zhu, Y. (2023). Machine-learning-based electric power forecasting. Sustainability, 15(14), 11299. Search in Google Scholar

Lee, M. H. L., Ser, Y. C., Selvachandran, G., Thong, P. H., Cuong, L., Son, L. H., ... & Gerogiannis, V. C. (2022). A comparative study of forecasting electricity consumption using machine learning models. Mathematics, 10(8), 1329. Search in Google Scholar

Ribeiro, A. M. N., do Carmo, P. R. X., Rodrigues, I. R., Sadok, D., Lynn, T., & Endo, P. T. (2020). Short-term firm-level energy-consumption forecasting for energy-intensive manufacturing: a comparison of machine learning and deep learning models. Algorithms, 13(11), 274. Search in Google Scholar

Albuquerque, P. C., Cajueiro, D. O., & Rossi, M. D. (2022). Machine learning models for forecasting power electricity consumption using a high dimensional dataset. Expert Systems with Applications, 187, 115917. Search in Google Scholar

Son, H., & Kim, C. (2020). A deep learning approach to forecasting monthly demand for residential– sector electricity. Sustainability, 12(8), 3103. Search in Google Scholar

Abdallah, M., Talib, M. A., Hosny, M., Waraga, O. A., Nasir, Q., & Arshad, M. A. (2022). Forecasting highly fluctuating electricity load using machine learning models based on multimillion observations. Advanced Engineering Informatics, 53, 101707. Search in Google Scholar

Li, X., Wang, Z., Yang, C., & Bozkurt, A. (2024). An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms. Energy, 296, 131259. Search in Google Scholar

Kesornsit, W., & Sirisathitkul, Y. (2022). Hybrid machine learning model for electricity consumption prediction using random forest and artificial neural networks. Applied Computational Intelligence and Soft Computing, 2022(1), 1562942. Search in Google Scholar

Souhe, F. G. Y., Mbey, C. F., Boum, A. T., Ele, P., & Kakeu, V. J. F. (2022). A hybrid model for forecasting the consumption of electrical energy in a smart grid. The Journal of Engineering, 2022(6), 629-643. Search in Google Scholar

Ferra Yanuar,Ranti Dwiwanata Putri,Dodi Devianto,Aidinil Zetra,Arrival Rince Putri & Yudiantri Asdi. (2024). People's Welfare Clustering Using Fuzzy C-Means with Spatial Information. IAENG International Journal of Computer Science(7). Search in Google Scholar

Paul Arévalo,Antonio Cano,Darío Benavides & Francisco Jurado. (2024). Fault analysis in clustered microgrids utilizing SVM-CNN and differential protection. Applied Soft Computing112031-112031. Search in Google Scholar

Yanling Han,Junjie Huang,Zhenling Ma,Bowen Zheng,Jing Wang & Yun Zhang. (2024). GBDT Method Integrating Feature-Enhancement and Active-Learning Strategies—Sea Ice Thickness Inversion in Beaufort Sea. Sensors(9). Search in Google Scholar

Micaela Jara Ten Kathen,Federico Peralta,Princy Johnson,Isabel Jurado Flores & Daniel Gutiérrez Reina. (2024). AquaFeL-PSO: An informative path planning for water resources monitoring using autonomous surface vehicles based on multi-modal PSO and federated learning. Ocean Engineering(P1),118787-118787. Search in Google Scholar

Mohtasham Khanahmadi. (2024). An effective vibration-based feature extraction method for single and multiple damage localization in thin-walled plates using one-dimensional wavelet transform: A numerical and experimental study. Thin-Walled Structures112288-112288. Search in Google Scholar