Accès libre

Research on multi-camera data fusion for improving fire detection accuracy

, , ,  et   
11 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

Kodur, V., Kumar, P., & Rafi, M. M. (2020). Fire hazard in buildings: review, assessment and strategies for improving fire safety. PSU research review, 4(1), 1-23. Search in Google Scholar

Boehmer, H. R., Klassen, M. S., & Olenick, S. M. (2021). Fire hazard analysis of modern vehicles in parking facilities. Fire technology, 57(5), 2097-2127. Search in Google Scholar

Cheng, M. Y., Chiu, K. C., Hsieh, Y. M., Yang, I. T., Chou, J. S., & Wu, Y. W. (2017). BIM integrated smart monitoring technique for building fire prevention and disaster relief. Automation in Construction, 84, 14-30. Search in Google Scholar

Saeed, F., Paul, A., Rehman, A., Hong, W. H., & Seo, H. (2018). IoT-based intelligent modeling of smart home environment for fire prevention and safety. Journal of Sensor and Actuator Networks, 7(1), 11. Search in Google Scholar

Xofis, P., Konstantinidis, P., Papadopoulos, I., & Tsiourlis, G. (2020). Integrating remote sensing methods and fire simulation models to estimate fire hazard in a south-east mediterranean protected area. Fire, 3(3), 31. Search in Google Scholar

Sharma, J., Granmo, O. C., Goodwin, M., & Fidje, J. T. (2017). Deep convolutional neural networks for fire detection in images. In Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, Athens, Greece, August 25–27, 2017, Proceedings (pp. 183-193). Springer International Publishing. Search in Google Scholar

Zhang, Y., Geng, P., Sivaparthipan, C. B., & Muthu, B. A. (2021). Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustainable Energy Technologies and Assessments, 45, 100986. Search in Google Scholar

Fonollosa, J., Solórzano, A., & Marco, S. (2018). Chemical sensor systems and associated algorithms for fire detection: A review. Sensors, 18(2), 553. Search in Google Scholar

Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N. (2020). A review on early forest fire detection systems using optical remote sensing. Sensors, 20(22), 6442. Search in Google Scholar

Bu, F., & Gharajeh, M. S. (2019). Intelligent and vision-based fire detection systems: A survey. Image and vision computing, 91, 103803. Search in Google Scholar

Li, P., & Zhao, W. (2020). Image fire detection algorithms based on convolutional neural networks. Case Studies in Thermal Engineering, 19, 100625. Search in Google Scholar

Xu, R., Lin, H., Lu, K., Cao, L., & Liu, Y. (2021). A forest fire detection system based on ensemble learning. Forests, 12(2), 217. Search in Google Scholar

Gaur, A., Singh, A., Kumar, A., Kumar, A., & Kapoor, K. (2020). Video flame and smoke based fire detection algorithms: A literature review. Fire technology, 56, 1943-1980. Search in Google Scholar

Muhammad, K., Khan, S., Elhoseny, M., Ahmed, S. H., & Baik, S. W. (2019). Efficient fire detection for uncertain surveillance environment. IEEE Transactions on Industrial Informatics, 15(5), 3113-3122. Search in Google Scholar

Gong, F., Li, C., Gong, W., Li, X., Yuan, X., Ma, Y., & Song, T. (2019). A Real‐Time Fire Detection Method from Video with Multifeature Fusion. Computational intelligence and neuroscience, 2019(1), 1939171. Search in Google Scholar

Sharma, A., Singh, P. K., & Kumar, Y. (2020). An integrated fire detection system using IoT and image processing technique for smart cities. Sustainable Cities and Society, 61, 102332. Search in Google Scholar

Kim, B., & Lee, J. (2019). A video-based fire detection using deep learning models. Applied Sciences, 9(14), 2862. Search in Google Scholar

Zhuangzhuang Du,Meng Cui,Xianbao Xu,Zhuangzhuang Bai,Jie Han,Wanchao Li... & Daoliang Li. (2024). Harnessing multimodal data fusion to advance accurate identification of fish feeding intensity. Biosystems Engineering135-149. Search in Google Scholar

Ebtehaj Isa & Bonakdari Hossein. (2024). Discussion of “Runoff Predictions in a Semiarid Watershed by Convolutional Neural Networks Improved with Metaheuristic Algorithms and Forced with Reanalysis and Climate Data”. Journal of Hydrologic Engineering(5), Search in Google Scholar

Mohan Karnati,Geet Sahu,Akanksha Yadav,Ayan Seal,Joanna Jaworek Korjakowska,Marek Penhaker & Ondrej Krejcar. (2024). MD-DCNN: Multi-Scale Dilation-Based Deep Convolution Neural Network for epilepsy detection using electroencephalogram signals. Knowledge-Based Systems112322-112322. Search in Google Scholar

Li Liu,Kaiye Huang,Yuang Bai,Qifan Zhang & Yujian Li. (2024). Real-time detection model of electrical work safety belt based on lightweight improved YOLOv5. Journal of Real-Time Image Processing(4), 151-151. Search in Google Scholar