Accès libre

Deep reinforcement learning based reactive power regulation and its optimization in power grids

, , , ,  et   
05 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

Das, C. K., Bass, O., Kothapalli, G., Mahmoud, T. S., & Habibi, D. (2018). Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renewable and Sustainable Energy Reviews, 91, 1205-1230. Search in Google Scholar

Mouassa, S., Bouktir, T., & Salhi, A. (2017). Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Engineering science and technology, an international journal, 20(3), 885-895. Search in Google Scholar

Bayat, A., & Bagheri, A. (2019). Optimal active and reactive power allocation in distribution networks using a novel heuristic approach. Applied Energy, 233, 71-85. Search in Google Scholar

Li, P., Ji, H., Wang, C., Zhao, J., Song, G., Ding, F., & Wu, J. (2017). Coordinated control method of voltage and reactive power for active distribution networks based on soft open point. IEEE Transactions on Sustainable Energy, 8(4), 1430-1442. Search in Google Scholar

Hu, X., Liu, Z. W., Wen, G., Yu, X., & Liu, C. (2020). Voltage control for distribution networks via coordinated regulation of active and reactive power of DGs. IEEE Transactions on Smart Grid, 11(5), 4017-4031. Search in Google Scholar

Aboshady, F. M., Pisica, I., Zobaa, A. F., Taylor, G. A., Ceylan, O., & Ozdemir, A. (2023). Reactive power control of PV inverters in active distribution grids with high PV penetration. IEEE Access. Search in Google Scholar

Duan, J., Shi, D., Diao, R., Li, H., Wang, Z., Zhang, B., ... & Yi, Z. (2019). Deep-reinforcement-learning-based autonomous voltage control for power grid operations. IEEE Transactions on Power Systems, 35(1), 814-817. Search in Google Scholar

Hossain, R. R., Yin, T., Du, Y., Huang, R., Tan, J., Yu, W., ... & Huang, Q. (2024). Efficient learning of power grid voltage control strategies via model-based deep reinforcement learning. Machine Learning, 113(5), 2675-2700. Search in Google Scholar

Dong, L., Lin, H., Qiao, J., Zhang, T., Zhang, S., & Pu, T. (2024). A coordinated active and reactive power optimization approach for multi-microgrids connected to distribution networks with multi-actor-attention-critic deep reinforcement learning. Applied Energy, 373, 123870. Search in Google Scholar

Chen, S., Duan, J., Bai, Y., Zhang, J., Shi, D., Wang, Z., ... & Sun, Y. (2021). Active power correction strategies based on deep reinforcement learning—Part II: A distributed solution for adaptability. CSEE Journal of Power and Energy Systems, 8(4), 1134-1144. Search in Google Scholar

Kryonidis, G. C., Malamaki, K. N. D., Gkavanoudis, S. I., Oureilidis, K. O., Kontis, E. O., Mauricio, J. M., ... & Demoulias, C. S. (2020). Distributed reactive power control scheme for the voltage regulation of unbalanced LV grids. IEEE Transactions on Sustainable Energy, 12(2), 1301-1310. Search in Google Scholar

Sarkar, M. N. I., Meegahapola, L. G., & Datta, M. (2018). Reactive power management in renewable rich power grids: A review of grid-codes, renewable generators, support devices, control strategies and optimization algorithms. Ieee Access, 6, 41458-41489. Search in Google Scholar

Chen, L., Deng, Z., & Xu, X. (2018). Two-stage dynamic reactive power dispatch strategy in distribution network considering the reactive power regulation of distributed generations. IEEE Transactions on Power Systems, 34(2), 1021-1032. Search in Google Scholar

Hu, D., Ye, Z., Gao, Y., Ye, Z., Peng, Y., & Yu, N. (2022). Multi-agent deep reinforcement learning for voltage control with coordinated active and reactive power optimization. IEEE Transactions on Smart Grid, 13(6), 4873-4886. Search in Google Scholar

Ali, M., Mujeeb, A., Ullah, H., & Zeb, S. (2020, May). Reactive power optimization using feed forward neural deep reinforcement learning method:(deep reinforcement learning dqn algorithm). In 2020 Asia Energy and Electrical Engineering Symposium (AEEES) (pp. 497-501). IEEE. Search in Google Scholar

Gao, Z., Zheng, Z., Wu, J., Qi, L., Li, W., & Yang, Y. (2021, October). Reactive power optimization of distribution network based on deep reinforcement learning and multi agent system. In 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2) (pp. 1052-1057). IEEE. Search in Google Scholar

Omid Emamjomehzadeh,Fatemeh Omidi,Reza Kerachian,Mohammad Javad Emami Skardi & Marzieh Momeni. (2024). Water-energy-food-greenhouse gases nexus management in urban environments: A robust multi-agent decision-support system. Sustainable Cities and Society105676-105676. Search in Google Scholar

Julie Runde Krogstad & Jarle Trondal. (2024). The Hierarchical Configurations of Policy Networks: A Study of Decision-Making Processes in Urban Transport. Administration & Society(6),763-785. Search in Google Scholar

Sun Ju Lee,Xingyu Gong & Gian Gabriel Garcia. (2024). Modified monotone policy iteration for interpretable policies in Markov decision processes and the impact of state ordering rules.Annals of Operations Research(prepubulish),1-59. Search in Google Scholar

Baodi Zhang,Liang Chang,Teng Teng,Qifang Chen,Qiangwei Li,Yaoguang Cao... & Xin Zhang. (2024). Multi-objective optimization with Q-learning for cruise and power allocation control parameters of connected fuel cell hybrid vehicles. Applied Energy123910-123910. Search in Google Scholar

Jeongyoon Lee,Taeje Park & Wonjin Sung. (2024). Digital twin based DDPG reinforcement learning for sum-rate maximization of AI-UAV communications. EURASIP Journal on Wireless Communications and Networking(1),57-57. Search in Google Scholar