Accès libre

Multidimensional data processing and tensor analysis for large-scale power grids in a parallel computing framework

 et   
04 oct. 2024
À propos de cet article

Citez
Télécharger la couverture

Wiese, F., Schlecht, I., Bunke, W. D., Gerbaulet, C., Hirth, L., Jahn, M., ... & Schill, W. P. (2019). Open Power System Data–Frictionless data for electricity system modelling. Applied Energy, 236, 401-409. Search in Google Scholar

Butt, O. M., Zulqarnain, M., & Butt, T. M. (2021). Recent advancement in smart grid technology: Future prospects in the electrical power network. Ain Shams Engineering Journal, 12(1), 687-695. Search in Google Scholar

Akhavan-Hejazi, H., & Mohsenian-Rad, H. (2018). Power systems big data analytics: An assessment of paradigm shift barriers and prospects. Energy Reports, 4, 91-100. Search in Google Scholar

Tu, C., He, X., Shuai, Z., & Jiang, F. (2017). Big data issues in smart grid–A review. Renewable and Sustainable Energy Reviews, 79, 1099-1107. Search in Google Scholar

Sauer, P. W., Pai, M. A., & Chow, J. H. (2017). Power system dynamics and stability: with synchrophasor measurement and power system toolbox. John Wiley & Sons. Search in Google Scholar

Zame, K. K., Brehm, C. A., Nitica, A. T., Richard, C. L., & Schweitzer III, G. D. (2018). Smart grid and energy storage: Policy recommendations. Renewable and sustainable energy reviews, 82, 1646-1654. Search in Google Scholar

Machowski, J., Lubosny, Z., Bialek, J. W., & Bumby, J. R. (2020). Power system dynamics: stability and control. John Wiley & Sons. Search in Google Scholar

Mollah, M. B., Zhao, J., Niyato, D., Lam, K. Y., Zhang, X., Ghias, A. M., ... & Yang, L. (2020). Blockchain for future smart grid: A comprehensive survey. IEEE Internet of Things Journal, 8(1), 18-43. Search in Google Scholar

Zhao, J., Gómez-Expósito, A., Netto, M., Mili, L., Abur, A., Terzija, V., ... & Meliopoulos, A. S. (2019). Power system dynamic state estimation: Motivations, definitions, methodologies, and future work. IEEE Transactions on Power Systems, 34(4), 3188-3198. Search in Google Scholar

Khalid, H., & Shobole, A. (2021). Existing developments in adaptive smart grid protection: A review. Electric Power Systems Research, 191, 106901. Search in Google Scholar

Bie, Z., Lin, Y., Li, G., & Li, F. (2017). Battling the extreme: A study on the power system resilience. Proceedings of the IEEE, 105(7), 1253-1266. Search in Google Scholar

El Mrabet, Z., Kaabouch, N., El Ghazi, H., & El Ghazi, H. (2018). Cyber-security in smart grid: Survey and challenges. Computers & Electrical Engineering, 67, 469-482. Search in Google Scholar

Zhou, Y., Guo, Q., Sun, H., Yu, Z., Wu, J., & Hao, L. (2019). A novel data-driven approach for transient stability prediction of power systems considering the operational variability. International Journal of Electrical Power & Energy Systems, 107, 379-394. Search in Google Scholar

Stoustrup, J., Annaswamy, A., Chakrabortty, A., & Qu, Z. (2019). Smart grid control. Springer International Publishing. doi, 10, 978-3. Search in Google Scholar

Momoh, J. A. (2017). Electric power system applications of optimization. CRC press. Search in Google Scholar

Gunduz, M. Z., & Das, R. (2020). Cyber-security on smart grid: Threats and potential solutions. Computer networks, 169, 107094. Search in Google Scholar

Gorjão, L. R., Anvari, M., Kantz, H., Beck, C., Witthaut, D., Timme, M., & Schäfer, B. (2020). Data-driven model of the power-grid frequency dynamics. IEEE access, 8, 43082-43097. Search in Google Scholar

Yoldaş, Y., Önen, A., Muyeen, S. M., Vasilakos, A. V., & Alan, I. (2017). Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 72, 205-214. Search in Google Scholar

Netto, M., & Mili, L. (2018). A robust data-driven Koopman Kalman filter for power systems dynamic state estimation. IEEE Transactions on Power Systems, 33(6), 7228-7237. Search in Google Scholar

Rehmani, M. H., Reisslein, M., Rachedi, A., Erol-Kantarci, M., & Radenkovic, M. (2018). Integrating renewable energy resources into the smart grid: Recent developments in information and communication technologies. IEEE Transactions on Industrial Informatics, 14(7), 2814-2825. Search in Google Scholar

Dileep, G. J. R. E. (2020). A survey on smart grid technologies and applications. Renewable energy, 146, 2589-2625. Search in Google Scholar

Zhang, Y., Xu, Y., Dong, Z. Y., & Zhang, R. (2018). A hierarchical self-adaptive data-analytics method for real-time power system short-term voltage stability assessment. IEEE Transactions on Industrial Informatics, 15(1), 74-84. Search in Google Scholar

Brown, T., Horsch, J., & Schlachtberger, D. (2018). PyPSA: Python for Power System Analysis. Journal of Open Research Software, 6(3). Search in Google Scholar

Constante-Flores, G. E., & Illindala, M. S. (2018). Data-driven probabilistic power flow analysis for a distribution system with renewable energy sources using Monte Carlo simulation. IEEE Transactions on Industry Applications, 55(1), 174-181. Search in Google Scholar

Liu, S., Zhao, Y., Lin, Z., Liu, Y., Ding, Y., Yang, L., & Yi, S. (2019). Data-driven event detection of power systems based on unequal-interval reduction of PMU data and local outlier factor. IEEE Transactions on Smart Grid, 11(2), 1630-1643. Search in Google Scholar

Zhou, Y., Arghandeh, R., & Spanos, C. J. (2017). Partial knowledge data-driven event detection for power distribution networks. IEEE Transactions on Smart Grid, 9(5), 5152-5162. Search in Google Scholar

Ghorbanian, M., Dolatabadi, S. H., & Siano, P. (2019). Big data issues in smart grids: A survey. IEEE Systems Journal, 13(4), 4158-4168. Search in Google Scholar

Omitaomu, O. A., & Niu, H. (2021). Artificial intelligence techniques in smart grid: A survey. Smart Cities, 4(2), 548-568. Search in Google Scholar

Kim, S. K., & Huh, J. H. (2018). A study on the improvement of smart grid security performance and blockchain smart grid perspective. Energies, 11(8), 1973. Search in Google Scholar

Abrahamsen, F. E., Ai, Y., & Cheffena, M. (2021). Communication technologies for smart grid: A comprehensive survey. Sensors, 21(23), 8087. Search in Google Scholar

Daki, H., El Hannani, A., Aqqal, A., Haidine, A., & Dahbi, A. (2017). Big Data management in smart grid: concepts, requirements and implementation. Journal of Big Data, 4, 1-19. Search in Google Scholar

Ghasempour, A. (2019). Internet of things in smart grid: Architecture, applications, services, key technologies, and challenges. Inventions, 4(1), 22. Search in Google Scholar

BiaoqiLi,MinXu,YuanZhou,HaibinLiu & RenlongZhang.(2024).Optimization of Security Identification in Power Grid Data through Advanced Encryption Standard Algorithm.Journal of Cyber Security and Mobility(2),239-264. Search in Google Scholar

Tang Zhen,Han Jing,Wang ShiJian,Ding Li & Zhu YiChao.(2023).Big data-based method for automatic localization of power quality disturbance signal of PV access distribution network.Journal of Physics: Conference Series(1), Search in Google Scholar

Qiusheng Yu,Xiaoyong Wang,Depin Lv,Bin Qi,Yongjing Wei,Lei Liu... & Wensheng Zhang.(2023).Data Fusion and Situation Awareness for Smart Grid and Power Communication Network Based on Tensor Computing and Deep Reinforcement Learning.Electronics(12), Search in Google Scholar

Qiusheng Yu,Ti Guan,Anqi Tian,Mingyue Si,Bin Qi,Yingjie Jiang... & Wensheng Zhang.(2024).Fault Diagnosis Based on Tensor Computing and Meta-Learning for Smart Grid and Power Communication Network.Electronics(9), Search in Google Scholar