This work is licensed under the Creative Commons Attribution 4.0 International License.
Arutyunov, V. S., & Lisichkin, G. V. (2017). Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels. Russian Chemical Reviews, 86(8), 777.Search in Google Scholar
Wang, H., Asif Amjad, M., Arshed, N., Mohamed, A., Ali, S., Haider Jafri, M. A., & Khan, Y. A. (2022). RETRACTED: Fossil Energy Demand and Economic Development in BRICS Countries. Frontiers in Energy Research, 10, 842793.Search in Google Scholar
Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, 289, 125834.Search in Google Scholar
Zhou, J., & Wang, B. (2017). Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews, 46(22), 6927-6945.Search in Google Scholar
Cheng, X., Pan, J., Zhao, Y., Liao, M., & Peng, H. (2018). Gel polymer electrolytes for electrochemical energy storage. Advanced Energy Materials, 8(7), 1702184.Search in Google Scholar
Hou, R., Gund, G. S., Qi, K., Nakhanivej, P., Liu, H., Li, F., ... & Park, H. S. (2019). Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Materials, 19, 212-241.Search in Google Scholar
Zhang, X., Zhang, Z., & Zhou, Z. (2018). MXene-based materials for electrochemical energy storage. Journal of energy chemistry, 27(1), 73-85.Search in Google Scholar
Wang, Z., Lee, Y. H., Kim, S. W., Seo, J. Y., Lee, S. Y., & Nyholm, L. (2021). Why cellulose‐based electrochemical energy storage devices?. Advanced Materials, 33(28), 2000892.Search in Google Scholar
Zhou, G., Xu, L., Hu, G., Mai, L., & Cui, Y. (2019). Nanowires for electrochemical energy storage. Chemical reviews, 119(20), 11042-11109.Search in Google Scholar
BUCKLEY, D. N., O’DWYER, C. O. L. M., QUILL, N., & LYNCH, R. P. (2018). Electrochemical Energy Storage. Energy Storage Options and Their Environmental Impact, 115.Search in Google Scholar
Zou, K., Deng, W., Cai, P., Deng, X., Wang, B., Liu, C., ... & Ji, X. (2021). Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives. Advanced Functional Materials, 31(5), 2005581.Search in Google Scholar
Sun, H., Zhu, J., Baumann, D., Peng, L., Xu, Y., Shakir, I., ... & Duan, X. (2019). Hierarchical 3D electrodes for electrochemical energy storage. Nature Reviews Materials, 4(1), 45-60.Search in Google Scholar
Zhang, F., Wei, M., Viswanathan, V. V., Swart, B., Shao, Y., Wu, G., & Zhou, C. (2017). 3D printing technologies for electrochemical energy storage. Nano Energy, 40, 418-431.Search in Google Scholar
Jia, Y., Zhang, J., Kong, D., Zhang, C., Han, D., Han, J., ... & Yang, Q. H. (2022). Practical graphene technologies for electrochemical energy storage. Advanced Functional Materials, 32(42), 2204272.Search in Google Scholar
Chang, P., Mei, H., Zhou, S., Dassios, K. G., & Cheng, L. (2019). 3D printed electrochemical energy storage devices. Journal of Materials Chemistry A, 7(9), 4230-4258.Search in Google Scholar
Chen, S., Qiu, L., & Cheng, H. M. (2020). Carbon-based fibers for advanced electrochemical energy storage devices. Chemical reviews, 120(5), 2811-2878.Search in Google Scholar
Mackanic, D. G., Chang, T. H., Huang, Z., Cui, Y., & Bao, Z. (2020). Stretchable electrochemical energy storage devices. Chemical Society Reviews, 49(13), 4466-4495.Search in Google Scholar
Mathis, T. S., Kurra, N., Wang, X., Pinto, D., Simon, P., & Gogotsi, Y. (2019). Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Advanced Energy Materials, 9(39), 1902007.Search in Google Scholar
Poizot, P., Gaubicher, J., Renault, S., Dubois, L., Liang, Y., & Yao, Y. (2020). Opportunities and challenges for organic electrodes in electrochemical energy storage. Chemical reviews, 120(14), 6490-6557.Search in Google Scholar
Talaie, E., Bonnick, P., Sun, X., Pang, Q., Liang, X., & Nazar, L. F. (2017). Methods and protocols for electrochemical energy storage materials research. Chemistry of Materials, 29(1), 90-105.Search in Google Scholar
Ma, J., Guo, X., Yan, Y., Xue, H., & Pang, H. (2018). FeOx‐based materials for electrochemical energy storage. Advanced Science, 5(6), 1700986.Search in Google Scholar
Sagadevan, S., Marlinda, A. R., Chowdhury, Z. Z., Wahab, Y. B. A., Hamizi, N. A., Shahid, M. M., ... & Johan, M. R. (2021). Fundamental electrochemical energy storage systems. In Advances in supercapacitor and supercapattery (pp. 27-43). Elsevier.Search in Google Scholar
Wang, H., Yang, Y., & Guo, L. (2017). Nature‐inspired electrochemical energy‐storage materials and devices. Advanced Energy Materials, 7(5), 1601709.Search in Google Scholar
Lv, Z., Li, W., Yang, L., Loh, X. J., & Chen, X. (2019). Custom-made electrochemical energy storage devices. ACS Energy Letters, 4(2), 606-614.Search in Google Scholar
Feng Li.(2024).SIMULATION OF TEMPERATURE FIELD AND OPTIMIZATION OF HEAT DISSIPATION STRUCTURE FOR LITHIUM-ION POWER BATTERY PACK BASED ON MULTI-OBJECTIVE FUNCTION OPTIMIZATION.Thermal Science(2B),1263 - 1270.Search in Google Scholar
Sumin V. I. & Sumin M. I..(2024).On Regularization of Classical Optimality Conditionsin Convex Optimization Problems for Volterra-Type Systems with OperatorConstraints.Differential Equations(2), 227-246.Search in Google Scholar
Kanhua Su,Wenhao Da,Meng Li,Hao Li & Jian Wei.(2024).Research on a drilling rate of penetration prediction model based on the improved chaos whale optimization and back propagation algorithm. Geoenergy Science and Engineering213017-.Search in Google Scholar