This work is licensed under the Creative Commons Attribution 4.0 International License.
Wang, S. P., & Zhao, D. M. (2019). A hierarchical power grid fault diagnosis method using multi-source information. IEEE Transactions on Smart Grid, 11(3), 2067-2079.Search in Google Scholar
Furse, C. M., Kafal, M., Razzaghi, R., & Shin, Y. J. (2020). Fault diagnosis for electrical systems and power networks: A review. IEEE Sensors Journal, 21(2), 888-906.Search in Google Scholar
Zhang, X., Guo, Z., Zheng, Y., Liu, J., Yan, P., & Zheng, L. (2022). Power grid fault diagnosis using polar PMU data plots. International Journal of Electrical Power & Energy Systems, 141, 108148.Search in Google Scholar
Zhang, X., Yue, S., & Zha, X. (2018). Method of power grid fault diagnosis using intuitionistic fuzzy Petri nets. IET Generation, Transmission & Distribution, 12(2), 295-302.Search in Google Scholar
Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33-47.Search in Google Scholar
Zhao, Y., Li, T., Zhang, X., & Zhang, C. (2019). Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future. Renewable and Sustainable Energy Reviews, 109, 85-101.Search in Google Scholar
Shao, S., Yan, R., Lu, Y., Wang, P., & Gao, R. X. (2019). DCNN-based multi-signal induction motor fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 69(6), 2658-2669.Search in Google Scholar
Shao, S., McAleer, S., Yan, R., & Baldi, P. (2018). Highly accurate machine fault diagnosis using deep transfer learning. IEEE Transactions on Industrial Informatics, 15(4), 2446-2455.Search in Google Scholar
Tang, S., Yuan, S., & Zhu, Y. (2019). Deep learning-based intelligent fault diagnosis methods toward rotating machinery. Ieee Access, 8, 9335-9346.Search in Google Scholar
Nath, A. G., Udmale, S. S., & Singh, S. K. (2021). Role of artificial intelligence in rotor fault diagnosis: A comprehensive review. Artificial Intelligence Review, 54, 2609-2668.Search in Google Scholar
Barja-Martinez, S., Aragüés-Peñalba, M., Munné-Collado, Í., Lloret-Gallego, P., Bullich-Massagué, E., & Villafafila-Robles, R. (2021). Artificial intelligence techniques for enabling Big Data services in distribution networks: A review. Renewable and Sustainable Energy Reviews, 150, 111459.Search in Google Scholar
Wen, L., Li, X., Gao, L., & Zhang, Y. (2017). A new convolutional neural network-based data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics, 65(7), 5990-5998.Search in Google Scholar
James, J. Q., Hou, Y., Lam, A. Y., & Li, V. O. (2017). Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks. IEEE Transactions on Smart Grid, 10(2), 1694-1703.Search in Google Scholar
Ning Hui & Chen Zhenyu.(2023).Fusion of the word2vec word embedding model and cluster analysis for the communication of music intangible cultural heritage.Scientific Reports(1),22717-22717.Search in Google Scholar
KanFeng,ChangliangYang,WenqiangZhu,KunLi & YaChen.(2024).PageRank talent mining algorithm of power system based on cognitive load and DPCNN.IET Communications(2),176-186.Search in Google Scholar
Yuhua Li,Mengyue Zhang,Chunyu Zhang,Hui Liang,Pu Li & Wangwei Zhang.(2024).YOLO-CCS: Vehicle detection algorithm based on coordinate attention mechanism.Digital Signal Processing104632-104632.Search in Google Scholar
Zaixing He,Chentao Shen & Xinyue Zhao.(2024).Local topology similarity guided probabilistic sampling for mismatch removal.Pattern Recognition110293-.Search in Google Scholar