Accès libre

Response of Productivity of Oilseed Flax Farmland to Different Crop Rotation Patterns Based on DSSAT Modeling

À propos de cet article

Citez

Niu, X. Y., & Ma, Rui. (2023). Effects of drought stress on leaf physiology of Reaumuria soongorica seedlings during the growing season. Pratacultural Science, 40(10), 2483-2492. Search in Google Scholar

Kamran, M., Yan, Z., Chang, S., Chen, X. J., Ahmad, I., Jia, Q. M., Ghani, M. U., Nouman, m., & Hou, F. j. (2022). Enhancing resource use efficiency of alfalfa with appropriate irrigation and fertilization strategy mitigate greenhouse gases emissions in the arid region of Northwest China. Field Crops Research, 289, 108715. Search in Google Scholar

Wang, Y. J., & Qin, D. H. (2017). Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Advances in Climate Change Research, 2017, 8(4), 268-278. Search in Google Scholar

Wen, Y., Liu, J., Zhang, J. Z., Li, W. H., & Ayantobo, O. O., Wang, Z. H. (2023). Effects of macro-plastics on soil hydrothermal environment, cotton yield, and fiber quality under mulched drip irrigation in the arid region of Northwest China. Field Crops Research, 302, 109060. Search in Google Scholar

Gao, R. P., Pan, Z. H., Zhang, J., Chen, X., & Qi, Y. L., et al. (2023). Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China. Agricultural Water Management, 2023, 283, 108326. Search in Google Scholar

Hu, Y. N., Liu, Y. J., Tang, H. J., Xu, Y. L., Pan, J. & (2014). Contribution of Drought to Potential Crop Yield Reduction in a Wheat-Maize Rotation Region in the North China Plain. Journal of Integrative Agriculture, 13(7), 1509-1519. Search in Google Scholar

Cao, S. P., He, Y., Zhang, L. F., Chen, Y., Yang, W., Yao, S., & Sun, Q. (2021). Spatiotemporal characteristics of drought and its impact on vegetation in the vegetation region of Northwest China. Ecological Indicators, 133, 108420. Search in Google Scholar

Liu, J. J.,Yang, L. J., Li, Z. T., & Li, T. L. (2013). Effects of Tomato Plant Growth and Yield in Facility Continuous Cropping System Hydroponics. Journal of Shenyang Agricultural University, 44(05), 581-584. Search in Google Scholar

Lu, C. D., Li, Y., Sun, D., & Zhang, L. N. (2018). Effect of continuous cropping on soil and grain yield. Modern Agricultural Science and Technology, (13), 19+22. Search in Google Scholar

Peng, S. J., Qin, Y., Xu, H. J., & Jiang, X. M. (2013). Effects of Different Continuous Cropping and Rotation Years on Yield of Processing Tomato. Tianjin Agricultural Sciences, 19(12), 76-79. Search in Google Scholar

Wang, Z. G., Guo, T. W., & Xu, W. H. (2006). Influence of continuous cropping in plastic sheds on the yield and quality of Chinese chives and soil nutrients. Journal of Gansu Agricultural University, (06), 34-37. Search in Google Scholar

Payne, R. W. (2015). The Design and Analysis of Long‐Term Rotation Experiments. Agronomy Journal, 107(2), 772-785. Search in Google Scholar

Du, Y. Y., Bao, Y. Y., Liu, X, Y., & Zhang, X. Y. (2024). Effects of Tartary Buckwheat Rotation on Enzyme Activities and Microorganisms in Rhizosphere Soil of Cultivated Potato in Yunnan Province. Journal of Agricultural Science and Technology. 26(05), 192-200. Search in Google Scholar

Liu, C., Plaza-bonilla, D., Coulter, J. A., Kutcher, H. R., & Beckie, H. J., et al. (2022). Diversifying crop rotations enhances agroecosystem services and resilience. Advances in Agronomy, 173, 299-335. Search in Google Scholar

Liu, Y. H., Li, Z. T., Li, Y. M., Liu, Z., & Chen, F., et al. (2023). Impact of extended dryland crop rotation on sustained potato cultivation in Northwestern China. Resources, Conservation and Recycling, 197, 107114. Search in Google Scholar

Schillinger, W. F. (2016). Seven rainfed wheat rotation systems in a drought-prone Mediterranean climate. Field Crops Research, 191, 123-130. Search in Google Scholar

Chen, Z. k., Li, P., Jiang, S. S., Chen, H. Y., & Wang, J. P., et al. (2021). Evaluation of resource and energy utilization, environmental and economic benefits of rice water-saving irrigation technologies in a rice-wheat rotation system. Science of The Total Environment, 757, 143748. Search in Google Scholar

Larkin, R. P., Griffin, T. S., & Honeycutt, C. W. (2010). Rotation and Cover Crop Effects on Soilborne Potato Diseases, Tuber Yield, and Soil Microbial Communities. Plant Disease, 94(12), 1491-1502. Search in Google Scholar

Degani, E., Leigh, S. G., Barber, H. M., Jones, H. E., & Lukac, M., et al. (2019). Crop rotations in a climate change scenario: short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agriculture, Ecosystems & Environment, 285, 106625. Search in Google Scholar

Ge, L. L., Zhao, C., Cheng, B. Y., & Yin, M. X. Effects of Different Crop Rotation Patterns and Nitrogen Application Levels on Yield and Quality of Spring Wheat. Chinese Agricultural Science Bulletin, 39(20), 6-13. Search in Google Scholar

Mehrabi, F., & Sepaskhah, A. R. (2020). Winter Wheat Yield and DSSAT Model Evaluation in a Diverse Semi-Arid Climate and Agronomic Practices. International Journal of Plant Production, 14(2), 221-243. Search in Google Scholar

Verma, A. K., Garg, P. K., Prasad, K. S. H., & Dadhwal, V. K. (2023). Variety-specific sugarcane yield simulations and climate change impacts on sugarcane yield using DSSAT-CSM-CANEGRO model. Agricultural Water Management, 275, 108034. Search in Google Scholar

Hoogenboom, G., Porter, C. H., Shelia, V., Boote, K. J., & Singh, U., et al. (2021). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.8. Gainesville, Florida, USA: DSSAT Foundation. Search in Google Scholar

Holzworth, D. P., Huth, N. I., Devoil, P. G., Zurcher, E. J., & Herrmann, N. I., et al. (2014). APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327-350. Search in Google Scholar

Boogaard, H. L., Diepen, C. A. van., Rotter, R. P., Cabrera, J. M. C. A., & Laar, H. H. van., et al. WOFOST 7.1; user’s guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5: 52. Wageningen: Staring Centrum, 1998. Search in Google Scholar

Stockle, C. O., Martin, S. A., & Campbell, G. S. (1994). CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield. Agricultural Systems, 46(3): 335-359. Search in Google Scholar

Ao, H. W. (2020). A simulation study of grass-crop rotation system based on APSIM model in Guyuan region of Ningxia. Journal of Agricultural Sciences, 41(03), 1-6. Search in Google Scholar

Ma, C. G., Cai, H. J., & Lu, Y. J. (2020). Modelling the Impact of Water and Nitrogen Application on N2O Emission from Farmland Using the APSIM Model. Journal of Irrigation and Drainage, 39(11), 120-129. Search in Google Scholar

Li, G., Huang, G. B., William, B., & Chen, W. (2009). Adaptation research of APSI M model under different tillage systems in the Loess hill-gullied region. Acta Ecologica Sinica, 29(05), 2655-2663. Search in Google Scholar

Ren, S., Yang. J. M., & Ren, Y. (2016). Simulation of maize grain weight in black soil area under maize-soybean rotation based on DASST model. Agriculture of Jilin, (08), 72-73. Search in Google Scholar

Li, J., & Shao, M. A. (2002). Modelling the Impact of Water and Nitrogen Application on N2O Emission from Farmland Using the APSIM Model. Journal of Northwest A & F University(Natural Science Edition), (04), 37-41. Search in Google Scholar

Ojeda, J. J., Volenec, J. J., Brouder, S. M., Caviglia, O. P., & Agnusdei, M. G. (2018). Modelling stover and grain yields, and subsurface artificial drainage from long-term maize rotations using APSIM. Agricultural Water Management, 195, 154-171. Search in Google Scholar

Balboa, G. R., Archontoulis, S. V., Salvagiotti, F., Garcia, F. O., & Stewart, W. M. (2019). A systems-level yield gap assessment of maize-soybean rotation under high- and low-management inputs in the Western US Maize Belt using APSIM. Agricultural Systems, 174, 145-154. Search in Google Scholar

Gao, F., Luan, X. B., Yin, Y. L., Sun, S. K., & Li, Y., et al. (2022). Exploring long-term impacts of different crop rotation systems on sustainable use of groundwater resources using DSSAT model. Journal of Cleaner Production, 336, 130377. Search in Google Scholar

Li, Z. T., Yang, J. Y., Drury, C. F., & Hoogenboom, G. (2015). Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agricultural Systems, 135, 90-104. Search in Google Scholar

Fan, Y. C., Li, Y., Wei, L. J., Zhao, X., & Zhou, H. (2023). Comparison of Responsiveness of Three Oil Flax Growth Models to Drought Stress at Budding Stage and Green Fruit Stage. Jiangsu Journal of Agricultural Sciences, 39(2), 423-433. Search in Google Scholar

Yi, L., Si, Y. Z., Liu, Q. Z., Ji, Y. D., Yao, N., & Song, X. Y. (2022). Effects of Droughts and Meteorology on Spring Wheat in Western Loess Plateau Based on DSSAT CERES Wheat Model. Transactions of the Chinese Society for Agricultural Machinery, 53(06), 338-348. Search in Google Scholar

Wang, H. D., Zhang, Y., Gao, Y. H., Wu, B.. & Yan, B., et al. (2022). Response of grain yield and related agronomic traits of oilseed flax to diversified cropping rotations. Acta Prataculturae Sinica, 31(12), 52-65. Search in Google Scholar

Tong, C. L., Zhang, W. J., Tang, Y., & Wang, H. Q. (2005). Simulation of day-by-day solar radiation. Chinese Journal of Agrometeorology, (03), 165-169. Search in Google Scholar

Wang, H. Y., Yan, L. J., Li, G., Wu, J. Q., & Chen, G. P. (2019). Adaptation of the DSSAT model under different farming practices in the Loess hilly region. Pratacultural Science, 36(03), 813-820. Search in Google Scholar

Gao, J., Liu, N. G., Wang, X. Q., Niu, Z. Y., & Liao, Q., et al. (2024). Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress. Agricultural Water Management, 294, 108727. Search in Google Scholar

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., & Batchelor, W. D., et al. (2003). The DSSAT cropping system model. European Journal of Agronomy. 18, 235–265. Search in Google Scholar

Kamara, A. Y., Garba, M., Tofa, A. I., Mohamed, A. M. L., & Souley, A. M., et al. (2023). Assessment of the impact of crop management strategies on the yield of early-maturing maize varieties in the drylands of Niger Republic: Application of the DSSAT-CERES-Maize model. Heliyon, 9(7), e17829. Search in Google Scholar

Hoogenboom, G., Porter, C. H., & Boote, K. J., et al. (2019). The DSSAT crop modeling ecosystem[M/OL]. Advances in crop modelling for a sustainable agriculture, 2019, 173-216. Search in Google Scholar

Xiong, W., Holman, L., Conway, D., Lin, E., & Li, Y. (2008). A crop model cross calibration for use in regional climate impacts studies. Ecological Modelling, 213(3), 365-380. Search in Google Scholar

Xi, X. D., Chang, H., Che, Z., Bao, Q. L., & Li, X. D., et al. (2019). A preliminary report on the introduction of six new maize cultivars in Dingxi dry farming area. Gansu Agricultural Science and Technology, (07), 61-65. Search in Google Scholar

Liu, H. S., Wu, B., Niu, J. Y., Li, Y., & Wu, J. Y., et al. (2018). Selection and breeding of new drought-resistant and high-quality spring wheat variety Ganchun 27 and related technology. China Seed Industry, (05), 66-69. Search in Google Scholar

Deligios, P. A., Farci, R., Sulas, L., Hoogenboom, G., & Ledda, L. (2013). Predicting growth and yield of winter rapeseed in a Mediterranean environment: Model adaptation at a field scale. Field Crops Research, 144, 100-112. Search in Google Scholar

Li, Y., Hoogenboom, G., Asseng, S., Niu, J. Y., & Wu, L., et al. (2022). Adaptation of the SIMPLE Model to Oilseed Flax (Linum usitatissimum L.) for Arid and Semi-Arid Environments. Agronomy, 12(6), 1267. Search in Google Scholar

Kraft, J. M., Kommedahl, T., & Linck, A. J. (1963). Histological Study of Malformation in Flax Seed after Exposure to 31°C. Botanical Gazette, 124(5), 367-371. Search in Google Scholar

Ma, L. J. (2018). Analysis of suitable climatic conditions for oilseed flax cultivation in Pingliang City. Modern Agricultural Science and Technology, (01), 222. Search in Google Scholar

Winch, T. (2006). Growing Food. Dordrecht: Springer Netherlands. http://link.springer.com/10.1007/978-1-4020-4975-0. Search in Google Scholar

Yang, J. C., Wu, R. X., & Wang, L. Q. (2010). Research on Selection and Breeding of New Oilseed Flax Cultivar Jinya No. 10. Anhui Agricultural Science Bulletin, 16(03), 88+132. Search in Google Scholar

Wang, L., Chen, M., Lam, P. Y., Dini-Andreote, F., & Dai, L., et al. (2022). Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome, 10(1), 233. Search in Google Scholar

Sun, J., Li, X., Qu, Z., Wang, H. R., & Cheng, Y., et al. (2023). Comparative proteomic analysis reveals novel insights into the continuous cropping induced response in Scrophularia ningpoensis. Journal of the Science of Food and Agriculture, 103(4), 1832-1845. Search in Google Scholar

Jing, J., Cong, W. F., & Bezemer, T. M. (2022). Legacies at work: plant–soil–microbiome interactions underpinning agricultural sustainability. Trends in Plant Science, 27(8), 781-792. Search in Google Scholar

Wang, L. Q., Yang, J. C., Wu, R. X., Zhang, Y. F., & Yang, Y. D., et al. (2011). New oilseed flax cultivar Jinya 10 characteristics and high-yield supporting cultivation technology. Crops, (01), 102-103. Search in Google Scholar

Wang, Z. X., Gao, J. S., Lu, Z. Z., & Wang, S. S. (2012). Experimental study on screening of oilseed flax cultivars in Ordos region. Anhui Agricultural Science Bulletin, 18(01), 77-78. Search in Google Scholar

He, D., Wang, E., Wang, J., Lilley, J., & Luo, Z., et al. (2017). Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agricultural & Forest Meteorology, 232, 163-175. Search in Google Scholar

Wang, L. G., Ye, C, L., Chen, J., Li, J., & Luo, J. J. (2021). Effects of Intercropping and Rotation Between Oil Flax and Wheat on Soil Physicochemical Properties and Growth of Oil Flax. Journal of Agricultural Science and Technology, 23(12): 161-171. Search in Google Scholar

Zhao, B., Gao, Y., Yan, B., Cui, Z. J., & Wang, H. D., et al. (2020). Varied previous crops on improving oilseed flax productivity in semiarid Loess Plateau in China. Oil Crop Science, 5(4), 187-193. Search in Google Scholar

Yang, Y., Zhang, H., Gao, L. L., Wang, J. Y., & Yang, J. H. (2019). Effects of different maize and soybean rotation patterns on water use and yield. Anhui Agricultural Science Bulletin, 25(24), 38-40. Search in Google Scholar

Yang, B. J., Sun, D. P., Zhang, Y. R., & Huang, G. Q. (2018). Comparison of resources use efficiencies among paddy-upland multi-crop rotation systems in the middle reaches of Yangtze River. Chinese Journal of Eco-Agriculture, 26(8), 1197-1205. Search in Google Scholar

Cui, Z. G. (2023). The response mechanism of soil organic carbon pool and crop productivity to oil flax rotation system in dry farming area. Gansu Agricultural University, 2023. Search in Google Scholar

eISSN:
2444-8656
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics