Accès libre

Design and Optimization Analysis of Mechanical Hydraulic System Based on ANSYS Workbench

   | 05 juil. 2024
À propos de cet article

Citez

The piping system in the mechanical hydraulic system occupies a large proportion, and the working environment of the whole piping system is relatively complex. This paper is based on the digital model of the mechanical hydraulic system and the optimization of the piping system in the mechanical, hydraulic system. Through the Newton method, we establish a mechanical, hydraulic piping model by studying the two ends of the solid support of a simple straight single pipe so as to optimize the mechanical, hydraulic piping system. Using ANSYS Workbench software, the optimized fluid and solid states are solved using the fluid-solid coupling method to analyze the fluid-solid coupling modes of the pipeline. In the first four orders of the pipeline system, the intrinsic frequency decreases with the increase of the flow velocity, and the inherent frequency tends to 0. As the axial force increases, the first four orders of the intrinsic frequency increase slowly. As fluid pressure increases, there is a small decrease in the inherent frequency of the first four orders. The simulation results are compared with experimental data, and the relative errors of the simulation results obtained by the fluid-solid coupling method do not exceed 2% under typical pressure conditions. The simulation calculation results are virtually identical to the test data, indicating that the simulation results are genuine and reliable.

eISSN:
2444-8656
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics