Accès libre

Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions

À propos de cet article

Citez

Byrski, W. and Byrski, J. (2012). The role of parameter constraints in EE and OE methods for optimal identification of continuous LTI models, InternationalJournal of Applied Mathematics and Computer Science22(2): 379-388, DOI: 10.2478/v10006-012-0028-3.10.2478/v10006-012-0028-3Search in Google Scholar

Deng, G. (2009). An entropy interpretation of the logarithmic image processing model with application to contrast enhancement, IEEE Transactions on Image Processing18(5): 1135-1140.10.1109/TIP.2009.2016796Search in Google Scholar

Deng, G. (2012). A generalized logarithmic image processing model based on the giga-vision sensor model, IEEE Transactionson Image Processing 21(3): 1406-1414.10.1109/TIP.2011.2166970Search in Google Scholar

Deng, G., Cahill, L.W. and Tobin, G.R. (1995). A study of logarithmic image processing model and its application to image enhancement, IEEE Transactions on Image Processing4(4): 506-512.10.1109/83.370681Search in Google Scholar

Fabijańska, A. (2012). A survey of subpixel edge detection methods for images of heat-emitting metal specimens, International Journal of Applied Mathematicsand Computer Science 22(3): 695-710, DOI: 10.2478/v10006-012-0052-3.10.2478/v10006-012-0052-3Search in Google Scholar

Fernandes, M., Gavet, Y. and Pinoli, J.C. (2010). Improving focus measurements using logarithmic image processing, Journal of Microscopy 242(3): 228-241, http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2818.2010.03461.x/abstract.Search in Google Scholar

Ferwerda, J.A., Pattanaik, S.N., Shirley, P. and Greenberg, D.P. (1996). A model of visual adaptation for realistic image synthesis, SIGGRAPH Conference Proceedings, New Orleans,LA, USA, pp. 249-258.Search in Google Scholar

Florea, C. and Florea, L. (2011). A parametric non-linear algorithm for contrast based autofocus, Proceedings ofthe IEEE International Conference on Intelligent ComputerCommunication and Processing, ICCP, Cluj, Romania, pp. 75-82.Search in Google Scholar

Florea, C., Vertan, C., Florea, L. and Sultana, A. (2009). Non-linear parametric derivation of contour detectors for cellular images, Proceedings of the IEEE InternationalSymposium on Signals, Circuits and Systems, ISSCS, Ias¸i,Romania, Vol. 2, pp. 321-325.Search in Google Scholar

Hefferon, J. (2008). Linear Algebra, Web edition, http://joshua.smcvt.edu/math/hefferon.html.Search in Google Scholar

Jourlin, M. and Pinoli, J.C. (1987). Logarithmic image processing, Acta Stereologica 6(1): 651-656.Search in Google Scholar

Jourlin, M. and Pinoli, J.C. (1988). A model for logarithmic image processing, Journal of Microscopy 149(1): 21-35.10.1111/j.1365-2818.1988.tb04559.xSearch in Google Scholar

Jourlin, M. and Pinoli, J.C. (1995). Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model, Signal Processing41(2): 225-237.10.1016/0165-1684(94)00102-6Search in Google Scholar

Kristan, M., Pers, J., Perse, M. and Kovacic, S. (2006). A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform, Pattern Recognition Letters27(13): 1431-1439.10.1016/j.patrec.2006.01.016Search in Google Scholar

Krotkov, E. (1987). Focusing, International Journal of ComputerVision 1(3): 223-237.10.1007/BF00127822Search in Google Scholar

Larson, E.C. and Chandler, D.M. (2010). Most apparent distortion: Full-reference image quality assessment and the role of strategy, Journal of Electronic Imaging19(1): 011006.10.1117/1.3267105Search in Google Scholar

Lee, S., Yoo, J., Kumar, Y. and Kim, S. (2009). Reduced energy-ratio measure for robust autofocusing in digital camera, IEEE Signal Processing Letters 16(2): 133-136.10.1109/LSP.2008.2008938Search in Google Scholar

Li, X., He, M. and Roux, M. (2010). Multifocus image fusion based on redundant wavelet transform, IET Image Processing4(4): 283-293.10.1049/iet-ipr.2008.0259Search in Google Scholar

Lim, J.S. (1990). Two Dimensional Signal and Image Processing, Prentice Hall, Upper Saddle River, NJ.Search in Google Scholar

Macmillan, N. and Creelman, C. (Eds) (2005). Detection Theory:A User’s Guide, Lawrence Erlbaum, Mahwah, NJ.Search in Google Scholar

Nayar, S. and Nakagawa, Y. (1994). Shape from focus, IEEETransactions on Pattern Analysis and Machine Intelligence16(8): 824-831.10.1109/34.308479Search in Google Scholar

Oppenheim, A.V. (1965). Superposition in a class of non-linear system, Technical report, MIT, Cambridge, MA.Search in Google Scholar

Oppenheim, A.V. (1967). Generalized superposition, Informationand Control 11(5,6): 528-536.10.1016/S0019-9958(67)90739-5Search in Google Scholar

Panetta, K., Wharton, E. and Agaian, S. (2008). Human visual system-based image enhancement and logarithmic contrast measure, IEEE Transactions on Systems, Man, and Cybernetics,B: Cybernetics 38(1): 174-188.10.1109/TSMCB.2007.90944018270089Search in Google Scholar

Panetta, K., Zhou, Y., Agaian, S. and Wharton, E. (2011). Parameterized logarithmic framework for image enhancement, IEEE Transactions on Systems, Man, andCybernetics, B: Cybernetics 41(2): 460-472.10.1109/TSMCB.2010.205884720977986Search in Google Scholar

Pinoli, J.C. and Debayle, J. (2007). Logarithmic adaptive neighborhood image processing (LANIP): Introduction, connections to human brightness perception, and application issues, EURASIP Journal on Advances inSignal Processing 036105(1), Article ID 36105, DOI: 10.1155/2007/36105.10.1155/2007/36105Search in Google Scholar

Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M. and Battisti, F. (2009). A database for evaluation of full-reference visual quality assessment metrics, Advancesof Modern Radioelectronics 10(1): 30-45.Search in Google Scholar

Pătras¸cu, V. and Voicu, I. (2000). An algebraical model for gray level images, Proceedings of the Exhibition on Optimizationof Electrical and Electronic Equipment, OPTIM,Brasov, Romania, pp. 809-812.Search in Google Scholar

Ramanath, R., Snyder, W., Yoo, Y. and Drew, M. (2005). Color image processing pipeline: A general survey of digital still camera processing, IEEE Signal Processing Magazine22(1): 34-43.10.1109/MSP.2005.1407713Search in Google Scholar

Russell, S.J. and Norvig, P. (2003). Artificial Intelligence: AModern Approach, Prentice Hall, Upper Saddle River, NJ.Search in Google Scholar

Stevens, J. and Stevens, S. (1963). Brightness functions: Effects of adaptation, Journal of the Optical Society of America53(3): 375-385.10.1364/JOSA.53.00037513984028Search in Google Scholar

Stevens, S. (1961). To honor Fechner and repeal his law, Science133(3446): 80-133.10.1126/science.133.3446.8017769332Search in Google Scholar

Subbarao, M. and Tyan, J. (1998). Selecting the optimal focus measure for autofocussing and depth-from-focus, IEEETransactions on Pattern Analysis and Machine Intelligence20(8): 864-870.10.1109/34.709612Search in Google Scholar

Sun, Y., Duthaler, S. and Nelson, B. (2005). Autofocusing algorithm selection in computer microscopy, Proceedingsof the International Conference on Intelligent Robots andSystems, Edmonton, Canada, pp. 809-812.Search in Google Scholar

Svahn, F. (1996). Tools and Methods to Obtaina Passive Autofocus System, Master’s thesis, Technical University of Linkoping, Linkoping, www.viktoria.se/˜fresva/documents/master_thesis.pdf.Search in Google Scholar

Vertan, C., Oprea, A., Florea, C. and Florea, L. (2008). A pseudo-logarithmic framework for edge detection, in J.B. Talon, S. Bourennane, W. Philips, D. Popescu and P. Scheunders (Eds.), Advances in Computer Vision, Lecture Notes in Computer Science, Vol. 5259, Springer-Verlag, Juan-les-Pins, pp. 637-644. Search in Google Scholar

Vollath, D. (1987). Automatic focusing by correlative methods, Journal of Microscopy 147(3): 279-288.10.1111/j.1365-2818.1987.tb02839.xSearch in Google Scholar

Wu, Q.Z. and Jeng, B.S. (2002). Background subtraction based on logarithmic intensities, Pattern Recognition Letters23(13): 1529-1536. 10.1016/S0167-8655(02)00116-2Search in Google Scholar

eISSN:
2083-8492
ISSN:
1641-876X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Mathematics, Applied Mathematics