Accès libre

Ethinyl Estadiol/Progestin Oral Contraceptives Depress Spatial Learning and Dysregulate Hippocampal CA3 Microstructure: Implications for Behavioral-Cognitive Effects of Chronic Contraceptive Use?

À propos de cet article

Citez

1. Kapp N. WHO provider brief on hormonal contraception and liver disease. Contraception. 2009; 80:325-326.10.1016/j.contraception.2009.01.020Search in Google Scholar

2. Schwartz JL, Gabelnick HL. Current contraceptive research. Perspect Sexualm Reprod Health. 2002; 34(6):310-316.10.2307/3097750Search in Google Scholar

3. Stanczyk FZ, Archer DF, Bhavnani BR. Ethinyl estradiol and 17β-estradiol in combined oral contraceptives: pharmacokinetics, pharmacodynamics and risk assessment. Contraception. 2013; 87(6):706-727.10.1016/j.contraception.2012.12.011Search in Google Scholar

4. Zhang K, Fent K. Determination of two progestin metabolites (17α hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and waste waters by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Sci Total Environ. 2018; 610-611:1164-1172.10.1016/j.scitotenv.2017.08.114Search in Google Scholar

5. Golobof A, Kiley J. The current status of oral contraceptives: progress and recent innovations. Semin Reprod Med. 2016; 34(3):145-151.10.1055/s-0036-1572546Search in Google Scholar

6. Dikke GB. Protective potential and safety of multiphase combined oralcontraception based on natural estrogen in mature women. Problems Reprod. 2018; 23(3):27-33.10.17116/repro201824327Search in Google Scholar

7. Rivera R, Yacobson I, Grimes D. The mechanism of action of hormonal contraceptives and intrauterine contraceptive devices. Am J Obstet Gynecol. 1999; 181(5):1263-1269.10.1016/S0002-9378(99)70120-1Search in Google Scholar

8. Nelson AL, Cwiak C. Combined oral contraceptives. In: Hatcher RA, Trussel J, Nelson A, et al. (Eds.). Contraceptive Technology. 20th ed. New York, Ardent Media. 2011, 249-342.Search in Google Scholar

9. United Nations. Population growth and universal access to reproductive health. Report of the United Nations Population Division. Department of Economic and Social Affairs. 2014. http://www.un.org/en/development/desa/population/publications/pdf/popfacts/PopFacts_2014-6.pdf. Accessed on June 24, 2017.Search in Google Scholar

10. De Leo V, Musacchio MC, Cappelli V, et al. Hormonal contraceptives: pharmacology tailored to women’s health. Human Reprod Update. 2016; 22(5):634-646.10.1093/humupd/dmw01627307386Search in Google Scholar

11. Michels KA, Brinton LA, Pfeiffer RM, et al. Oral contraceptive use and risks of cancer in the NIH-AARP diet and health study. Am J Epidemiol. 2018; 187(8):1630-1641.10.1093/aje/kwx388648753529394309Search in Google Scholar

12. Toffoletto S, Lanzenberger R, Gingnell M, et al. Emotional and cognitive functional imaging of estrogen and progester one effects in the female human brain: a systematic review. Psychoneuroendocrinol. 2014; 50:28-52.10.1016/j.psyneuen.2014.07.02525222701Search in Google Scholar

13. Gingnell M, Engman J, Frick A, et al. Oral contraceptive use changes brain activity and mood in women with previous negative effect on the pill- A double-blinded, placebo-controlled randomized trial of a levonorgestrel-containing combined oral contraceptive. Psychoneuroendocrinol, 2013; 38(7):1133-1144.10.1016/j.psyneuen.2012.11.006Search in Google Scholar

14. Pletzer B, Kronbichler M, Kerschbaum H. Differential effects of androgenic and anti-androgenic progestins on fusiform and frontal gray matter volume and face recognition performance. Brain Res. 2015; 1596:108-115.10.1016/j.brainres.2014.11.025Search in Google Scholar

15. Gresack JE, Frick KM. Effects of continuous and intermittent estrogen treatments on memory in aging female mice. Brain Res. 2006; 1115:135-147.10.1016/j.brainres.2006.07.067Search in Google Scholar

16. Mennenga SE, Gerson JE, Koebele SV, et al. Understanding the cognitive impact of the contraceptive estrogen ethinyl estradiol: tonic and cyclic administration impairs memory, and performance correlates with basal forebrain cholinergic system integrity. Psychoneuroendocrinol. 2015; 54:1-13.10.1016/j.psyneuen.2015.01.002Search in Google Scholar

17. Snihur AW, Hampson E, Cain DP. Estradiol and corticosterone independently impair spatial navigation in the Morris water maze in adult female rats. Behav Brain Res. 2008; 187(1):56-66.10.1016/j.bbr.2007.08.023Search in Google Scholar

18. Frye CA, Walf AA. Progesterone to ovariectomized mice enhances cognitive performance in the spontaneous alternation, object recognition, but not placement, water maze, and contextual and cued conditioned fear tasks. Neurobiol Learn Mem. 2008; 90:171-177.10.1016/j.nlm.2008.03.005Search in Google Scholar

19. Braden BB, Andrews MG, Acosta JI, et al. A comparison of progestins within three classes: Differential effects on learning and memory in the aging surgically menopausal rat. Behav Brain Res. 2017; 322(Pt B):258-268.10.1016/j.bbr.2016.06.053Search in Google Scholar

20. Johansson I-M, Birzniece V, Lindblad C, et al. Allopregnanolone inhibits learning in the Morris water maze. Brain Res. 2002; 934(2):125-131.10.1016/S0006-8993(02)02414-9Search in Google Scholar

21. Nielsen SE, Segal SK, Worden IV, et al. Hormonal contraception use alters stress responses and emotional memory. Biol Psychol. 2013; 92(2):257-266.10.1016/j.biopsycho.2012.10.007355860323131613Search in Google Scholar

22. Andreano J, Cahill L, Petersen N, et al. Oral contraceptive pill use is associated with localized decreases in cortical thickness. Human Brain mapping. Arch Dis Child. 2015; 62(4):362-369.Search in Google Scholar

23. Kiernan JA, Rajakumar N. Barr’s The Human Nervous System: An Anatomical Viewpoint. Philadelphia, Wolters Kluwer/Lippincott Williams & Wilkins. 2014.Search in Google Scholar

24. Bruchey AK, Gonzalez-Lima F. Enhanced metabolic capacity of the frontal cerebral cortex after Pavlovian conditioning. Neurosci. 2008; 152(2):299-307.10.1016/j.neuroscience.2007.08.036234648518291593Search in Google Scholar

25. Méndez-López M, Méndez M, López L, et al. Spatial working memory in young male and female rats: Involvement of different limbic system regions revealed by cytochrome oxidase activity. Neurosci Res. 2009; 65:28-34.10.1016/j.neures.2009.05.001Search in Google Scholar

26. Devineni D, Skee D, Vaccaro N, et al. Pharmacokinetics and pharmacodynamics of a transdermal contraceptive patch and an oral contraceptive. J Clin Pharmacol. 2007; 47:497–509.10.1177/0091270006297919Search in Google Scholar

27. Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer‘s disease model mice. J Vis Exp. 2011; 53:2920.10.3791/2920Search in Google Scholar

28. Barnhart CD, Yang D, Lein PJ. Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One. 2015; 10(4):e0124521.10.1371/journal.pone.0124521Search in Google Scholar

29. Terry AV. Spatial navigation (water maze) tasks. In; Buccafusco JJ (Ed.). Methods of Behavior Analysis in Neuroscience. 2nd ed. Boca Raton (FL), CRC Press/Taylor & Francis. 2009.Search in Google Scholar

30. Pletzer B, Kronbichler M, Aichhorn M, et al. Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Res. 2010; 1348(12):55-62.10.1016/j.brainres.2010.06.019Search in Google Scholar

31. Griksiene R, Ruksenas O. Effects of hormonal contraceptives on mental rotation and verbal fluency. Psychoneuroendocrinol. 2011; 36(8):1239-1248.10.1016/j.psyneuen.2011.03.001Search in Google Scholar

32. Egan KR, Gleason CE. Longer duration of hormonal contraceptive use predicts better cognitive outcomes later in life. J Women Health (Larchmt). 2012; 21(12):1259-1266.10.1089/jwh.2012.3522Search in Google Scholar

33. Martins DP, Semenoff TADV, Borges ÁH, et al. Chronic stress associated to contraceptives use on the progression of ligature-induced periodontitis in rats. Revista de Odontologia da UNESP. 2016; 45(5):290-296.10.1590/1807-2577.04116Search in Google Scholar

34. McEwen BS, Mirsky AE. Stress-induced remodelling of hippocampal CA3 pyramidal neurons. Brain Res. 2016; 1645: 50-54.10.1016/j.brainres.2015.12.043Search in Google Scholar

35. Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992; 588(2):341-345.10.1016/0006-8993(92)91597-8Search in Google Scholar

36. Ekanem TB, Nwakanma AA, Eluwa MA, Ekong MB. Histological and immunohistochemical alterations of the amygdala of female Wistar rats administered oral ethinyl estradiol and levonogestrel combination. W J Biomed Res. 2020; 7(1):21-26.Search in Google Scholar

37. Conrad CD, LeDoux JE, Magarinos AM, et al. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci. 1999; 113: 902-913.10.1037/0735-7044.113.5.902Search in Google Scholar

38. Butterfield DA, Lange ML. Multifunctional roles of enolase in Alzheimer’s disease brain: beyond altered glucose metabolism. J Neurochem. 2009; 111:915-933.10.1111/j.1471-4159.2009.06397.xSearch in Google Scholar

39. Ogundele OM, Madukwe J, Omotosho OA, et al. Immunohistochemical localization of neuron specific enolase and CD3 lymphocyte activation. J Med Sci. 2012; 12:92-98.10.3923/jms.2012.92.98Search in Google Scholar

40. Hattori T, Takei N, Mizuno Y, et al. Neurotrophic and neuroprotective effects of neuron-specific enolase on cultured neurons from embryonic rat brain. Neurosci Res. 1995; 21(3):191-198.10.1016/0168-0102(94)00849-BSearch in Google Scholar

41. Rosenstein JM. Developmental expression of neuron-specific enolase immunoreactivity and cytochrome oxidase activity in neocortical transplants. Exp Neurol. 1993; 124(2): 208-218.10.1006/exnr.1993.11918287924Search in Google Scholar

42. Knapman A, Kaltwasser SF, Martins-de-Souza D, et al. Increased stress reactivity is associated with reduced hippocampal activity and neuronal integrity along with changes in energy metabolism. Eur J Neurosci. 2012; 35(3):412-422.10.1111/j.1460-9568.2011.07968.x22288479Search in Google Scholar

43. Oken BS, Chamine I, Wakeland W. A systems approach to stress, stressors and resilience in humans. Behav Brain Res. 2015; 282:144-154.10.1016/j.bbr.2014.12.047432392325549855Search in Google Scholar

44. Paradiso K, Zhang J, Steinbach J. The C terminus of the human nicotinic alpha4beta2 receptor forms a binding site required for potentiation by an estrogenic steroid. J Neurosci. 2001; 21(17):6561-6568.10.1523/JNEUROSCI.21-17-06561.2001Search in Google Scholar

45. Nagele RG, Wegiel J, Venkataraman V, et al. Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging. 2004: 25; 663-674.10.1016/j.neurobiolaging.2004.01.00715172746Search in Google Scholar

46. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005; 50(4):427-434.10.1002/glia.2020715846805Search in Google Scholar

47. Pekny M, Pekna A. Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol. 2004; 204:428-437.10.1002/path.1645Search in Google Scholar

48. Nielsen SE, Ertman N, Lakhani YS, et al. Hormonal contraception usage is associated with altered memory for an emotional story. Neurobiol Learn Mem. 2011; 96(2):378.10.1016/j.nlm.2011.06.013Search in Google Scholar

49. Woolley C, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990; 531:225-231.10.1016/0006-8993(90)90778-ASearch in Google Scholar

50. Greenstein B, Greenstein A. Color Atlas of Neuroscience: Neuroanatomy and Neurophysiology. New York: Thieme. 2000.10.1055/b-005-148864Search in Google Scholar

eISSN:
2719-5384
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other