Accès libre

Pathophysiology of Depression and Novel Sources of Phytochemicals for its Treatment – A Systematic Review

À propos de cet article

Citez

1. Demyttenaere K, Bruffaerts R, Posada-Villa J, et al. Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys. JAMA. 2004; 291:2581-2590.10.1001/jama.291.21.258115173149 Search in Google Scholar

2. WHO, Fact Sheet – Mental Health 2019, Accessed 04.03.2019 at: http://www.euro.who.int/en/health-topics/noncommunicable-diseases/mental-health/data-and-resources/fact-sheet-mental-health-2019. Search in Google Scholar

3. Hinkov H, Dimitrov P, Zarkov Z et al. National Representative Epidemiological Study Of Common Mental Disorders In Bulgaria Epibul 2, 2016-2017: Tool, Methodology, Process Evaluation. Soc Med. 2017; 1: 21-23. Search in Google Scholar

4. Katz MM, Koslow SH, Berman N et al. A multi-vantaged approach to measurement of behavioral and affect states for clinical and psychobiological research. Psychol Rep. 1984; 55:619-671.10.2466/pr0.1984.55.2.6196514929 Search in Google Scholar

5. Katz MM, Maas JW. Psychopharmacology and the etiology of psychopathological states: are we looking in the right way? Neuropsychopharmacology. 1994; 10:139-144. Search in Google Scholar

6. Mimura M. Comorbidity of Depression and Other Diseases. JMAJ 2001; 44(5): 225-229. Search in Google Scholar

7. Kendler KS, Neale M, Kessler R et al. A twin study of recent life events and difficulties. Arch Gen Psychiatry. 1993; 50:789-796.10.1001/archpsyc.1993.018202200410058215803 Search in Google Scholar

8. Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in women. Am J Psychiatry. 2002; 159:1133-1145.10.1176/appi.ajp.159.7.113312091191 Search in Google Scholar

9. Kendler KS, Thornton LM, Gardner CO. Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatry. 2001; 158:582-156.10.1176/appi.ajp.158.4.58211282692 Search in Google Scholar

10. Goodwin GM. Depression and associated physical diseases and symptoms. Dialogues Clin Neurosci. 2006; 8(2):259-265.10.31887/DCNS.2006.8.2/mgoodwin Search in Google Scholar

11. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965; 122(5):509-22.10.1176/ajp.122.5.5095319766 Search in Google Scholar

12. Bunney WE Jr, Davis JM. Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry. 1965; 13(6):483-94.10.1001/archpsyc.1965.017300600010015320621 Search in Google Scholar

13. Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry. 2000; 61 S6:4-6. Search in Google Scholar

14. Delgado PL. Depression: the case for a monoamine deficiency. J Clin Psychiatry. 2000; 61 S6:7-11. Search in Google Scholar

15. Muller JC, Pryor WW, Gibbons JE, Orgain ES. Depression and anxiety occurring during Rauwolfia therapy. J Am Med Assoc. 1955; 29; 159(9):836-9.10.1001/jama.1955.0296026000600213263127 Search in Google Scholar

16. Shore PA, Silver SL, Brodie BB.Interaction of reserpine, serotonin, and lysergic acid diethylamide in brain. Science. 1955; 122(3163):284-5.10.1126/science.122.3163.284.b Search in Google Scholar

17. Shore PA, Pletscher A, Tomich EG et al. Role of brain serotonin in reserpine action. Ann N Y Acad Sci. 1957; 66(3):609-15; discussion, 615-7. Search in Google Scholar

18. Weiner N, Cloutier G, Bjur R, Pfeffer RI. Modification of norepinephrine synthesis in intact tissue by drugs and during short-term adrenergic nerve stimulation. Pharmacol Rev. 1972; 24(2): 203-221. Search in Google Scholar

19. Mann JJ. Loss of antidepressant effect with long-term monoamine oxidase inhibitor treatment without loss of monoamine oxidase inhibition. J Clin Psychopharmacol. 1983; 3:363-366.10.1097/00004714-198312000-00007 Search in Google Scholar

20. Fava M, Rappe SM, Pava JA, et al. Relapse in patients on long-term fluoxetine treatment respond to increased fluoxetine dose. J. Clin Psychiatry. 1995; 56:52-55. Search in Google Scholar

21. Sharma V. Loss of response to antidepressants and subsequent refractoriness: diagnostic issues in a retrospective case series. J Affect Disord. 2001; 64:99-106.10.1016/S0165-0327(00)00212-3 Search in Google Scholar

22. Drevets WC, Price JL, Simpson JR Jr et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997; 386:824-827.10.1038/386824a0 Search in Google Scholar

23. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013; 14:609-625.10.1038/nrn3381 Search in Google Scholar

24. Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999; 45:1085-1098.10.1016/S0006-3223(99)00041-4 Search in Google Scholar

25. Kang HJ, Kim JM, Lee JY et al. BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord. 2013; 151:679-685.10.1016/j.jad.2013.08.00123992681 Search in Google Scholar

26. Duric V, Banasr M, Stockmeier CA et al. Altered expression of synapse and glutamate related genes in postmortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. 2013; 16:69-82.10.1017/S1461145712000016341464722339950 Search in Google Scholar

27. 2Morales-Medina JC, Juarez I, Venancio-Garcia E et al. Impaired structural hippocampal plasticity is associated with emotional and memory deficits in the olfactory bulbectomized rat. Neuroscience. 2013; 236:233-243.10.1016/j.neuroscience.2013.01.03723357118 Search in Google Scholar

28. Willner P, Scheel-Krüger J. The neurobiology of depression and antidepressant action. Neuroscience and Biobehavioral Reviews 2013; 37: 2331-2371.10.1016/j.neubiorev.2012.12.00723261405 Search in Google Scholar

29. Bremner JD, Randall P, Scott TM et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1995; 152: 973-981.10.1176/ajp.152.7.97332337677793467 Search in Google Scholar

30. Lee T, Jarome T, Li SJ, Kim JJ, Helmstetter FJ. Chronic stress selectively reduces hippocampal volume in rats: a longitudinal magnetic resonance imaging study. Neuroreport. 2009; 20: 1554-1558.10.1097/WNR.0b013e328332bb09 Search in Google Scholar

31. Conrad CD, LeDoux JE, Magarinos AM, McEwen BS. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci. 1999; 113: 902-913.10.1037/0735-7044.113.5.902 Search in Google Scholar

32. Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Exp Neurol. 2012; 233:12-21.10.1016/j.expneurol.2011.01.008 Search in Google Scholar

33. Grønli J, Bramham C, Murison R et al. Chronic mild stress inhibits BDNF protein expression and CREB activation in thedentate gyrus but not in the hippocampus proper. Pharm Bio Behav. 2006; 85(4):842-9.10.1016/j.pbb.2006.11.021 Search in Google Scholar

34. Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch. Gen. Psychiatry. 1997; 54(7):597-606. Search in Google Scholar

35. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry. 2006; 59(12):1116-1127. Search in Google Scholar

36. Björkholm C, Monteggia LM. BDNF – a key transducer of antidepressant effects. Neuropharmacology. 2016; 102:72–79. doi:10.1016/j.neuropharm.2015.10.03410.1016/j.neuropharm.2015.10.034 Search in Google Scholar

37. Levinson, D. The genetics of depression: a review. Biological Psychiatry. 2006; 60 (2): 84-92.10.1016/j.biopsych.2005.08.024 Search in Google Scholar

38. Maurice, DH, Ke, H, Ahmad, F et al. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov. 2014; 13, 290-314. Search in Google Scholar

39. Rose, GM, Hopper, A, De Vivo, M, Tehim, A. Phosphodiesterase inhibitors for cognitive enhancement. Curr. Pharm. Des. 2005; 11:3329-3334. Search in Google Scholar

40. García-Osta, A, Cuadrado-Tejedor, M, Garcia-Barroso, C et al. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem. Neurosci. 2012; 3:832-844. Search in Google Scholar

41. Pearse, DD, Hughes, ZA. PDE4B as a microglia target to reduce neuroinflammation. Glia. 2016; 64:1698-1709.10.1002/glia.22986 Search in Google Scholar

42. Zou, ZQ, Chen, JJ, Feng, HF et al. Novel phosphodiesterase 4 inhibitor FCPR03 alleviates lipopolysaccharide-induced neuroinflammation by regulation of the cAMP/PKA/CREB signaling pathway and NF-kappaB Inhibition. J. Pharmacol. Exp. Ther. 2017; 362, 67-77. Search in Google Scholar

43. Yu, H, Zou, Z, Zhang, X et al. Inhibition of phosphodiesterase 4 by FCPR03 alleviates lipopolysaccharide-induced depressive-like behaviors in mice: involvement of p38 and JNK signaling pathways. Int. J. Mol. Sci. 2018; 19: E513.10.3390/ijms19020513 Search in Google Scholar

44. Kuo DC, Tran M, Shah AA, et al. Depression and the suicidal patient. Emerg Med Clin North Am 2015; 33:765-78.10.1016/j.emc.2015.07.005 Search in Google Scholar

45. Riede, HL. Fourth-generation fluoroquinolones in tuberculosis. Lancet. 2009; 373 (9670): 1148-1149.10.1016/S0140-6736(09)60559-6 Search in Google Scholar

46. Fox H, Gibas T. Synthetic tuberculostats. V. Alkylidene derivatives of isonicotinyhydrazineJ. Org. Chem. 1953; 18(8): 983-989 Search in Google Scholar

47. Loomer, HP, Saunders, JC, Kline, NS. A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatric Research Reports. 1957; 8:129-141. Search in Google Scholar

48. Chockalingam R, Gott BM, Conway CR. Tricyclic Antidepressants and Monoamine Oxidase Inhibitors: Are They Too Old for a New Look? Handbook of Experimental Pharmacology. 2019;250:37-48. Search in Google Scholar

49. Walker FG. A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: Do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology, 2013; 67: 304-317. Search in Google Scholar

50. Lu Y, Mak KK, Van Bever HP, et al Prevalence of anxiety and depressive symptoms in adolescents with asthma: a meta-analysis and meta-regression. Pediatr Allergy Immunol. 2012; 23:707-715.10.1111/pai.1200022957535 Search in Google Scholar

51. Lim VZ, Ho RC, Tee SI, et al. Anxiety and depression in patients with atopic dermatitis in a Southeast Asian tertiary dermatological center. Ann Acad Med Singapore 2016.10.47102/annals-acadmedsg.V45N10p451 Search in Google Scholar

52. Zhang MW, Ho RC, Cheung MW, et al. Prevalence of depressive symptoms in patients with chronic obstructive pulmonary disease: a systematic review, meta-analysis and meta-regression. Gen Hosp Psychiatry 2011; 33:217-23.10.1016/j.genhosppsych.2011.03.00921601717 Search in Google Scholar

53. Mak A, Tang CS, Chan MF, et al. Damage accrual, cumulative glucocorticoid dose and depression predict anxiety in patients with systemic lupus erythematosus. Clin Rheumatol 2011.10.1007/s10067-010-1651-821221690 Search in Google Scholar

54. Ho RC, Fu EH, Chua AN, et al. Clinical and psychosocial factors associated with depression and anxiety in Singaporean patients with rheumatoid arthritis. Int J Rheum Dis 2011; 14:37-47.10.1111/j.1756-185X.2010.01591.x21303480 Search in Google Scholar

55. Mak KK, Kong WY, Mak A, et al. Polymorphisms of the serotonin transporter gene and post-stroke depression: a meta-analysis. J Neurol Neurosurg Psychiatry 2013.10.1136/jnnp-2012-30379123236014 Search in Google Scholar

56. Liddell, Henry and Robert Scott (1980). A Greek-English Lexicon (Abridged Edition). United Kingdom: Oxford University Press. ISBN 0-19-910207-4. Search in Google Scholar

57. Kessler, RC, Soukup, J, Davis, RB et al. The use of complementary and alternative therapies to treat anxiety and depression in the United States. Am. J. Psychiatry. 2001; 158:289-294. Search in Google Scholar

58. Harvey, AL, Young, LC, Viljoen, AM, Gericke, NP. Pharmacological actions of the South African medicinal and functional food plant Sceletium tortuosum and its principal alkaloids. Journal of Ethnopharmacology. 2011; 137(3):1124-1129.10.1016/j.jep.2011.07.03521798331 Search in Google Scholar

59. Hanks, GR. (ed.). Narcissus and daffodil: The genus Narcissus. CRC Press, Boca Raton, FL, 2003.10.1201/9780203219355 Search in Google Scholar

60. Heinrich, M, Barnes, J, Gibbons, S, Williamson, E. Fundamentals of Pharmacognosy and Phytotherapy. Churchill Livingstone, London, 2004. Search in Google Scholar

61. Kumar, V. Potential medicinal plants for CNS disorders: an overview. Phytother. Res. 2006; 20(12):1023-1035. Search in Google Scholar

62. Spinella, M. The Psychopharmacology of Herbal Medicine: Plant Drugs That Alter Mind, Brain and Behavior (Paperback). MIT Press, Cambridge, 2001. Search in Google Scholar

63. Rahimi, R, Nikfar, S, Abdollahi, M. Efficacy and tolerability of Hypericum perforatumin major depressive disorder in comparison with selective serotonin reuptake inhibitors: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33:118-127.10.1016/j.pnpbp.2008.10.01819028540 Search in Google Scholar

64. Buket B, Ahmet E, Gulen K et al. Somer. Alkaloid Profiling of Galan-thus woronowii Losinsk. by GC-MS and evaluation of its biological activity. Marmara Pharmaceutical Journal. 2017; 21 (4):915-920.10.12991/mpj.2017.12 Search in Google Scholar

65. Berkov, S, Osorio E, Viladomat F, Bastida J. Chapter Two – Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. The Alkaloids: Chemistry and Biology. 2020; 83: 113-185. Search in Google Scholar

66. Artyushenko, ZT. Amaryllidaceae of USSR, morphology, taxonomy and use. Nauka, Leningrad, Russia, 1970. Search in Google Scholar

67. Khamidkhodzhaev, SA. Biology, resources and introduction of medicinal plants of Ungernia Bunge and Ficus L. in Middle Asia. Main Botanical Garden, Moscow, Russia, Dr. Sci. Diss. Abstr, 1984. Search in Google Scholar

68. Pigni, NB, Berkov, S, Elamrani, A, et al. Two New Alkaloids from Narcissus serotinus L.. Molecules, 2010; 15: 7083-7089.10.3390/molecules15107083625924920948496 Search in Google Scholar

69. Birks, J Birks, Jacqueline S. Cholinesterase inhibitors for Alzheimer’s disease. The Cochrane Database of Systematic Reviews. 2006; 1: CD005593.10.1002/14651858.CD005593 Search in Google Scholar

70. Bodendorf, K, Krieger, W. Alkaloids of Mesembryanthemum tortuosum. Arch. Pharm. 1957; 290:441. Search in Google Scholar

71. Smith, MT, Crouch, NR, Gericke, N, Hirst, M. Psychoactive Constituents of the Genus Sceletium N.E.Br. and other Mesembryanthemaceae: A Review. Journal of Ethnopharmacology. 1996; 50(3):119-130.10.1016/0378-8741(95)01342-3 Search in Google Scholar

72. Gericke, N, Van Wyk, B. In African Natural Health CC(Ed.), Pharmaceutical compositions containing mesembrine, 2001. Search in Google Scholar

73. Harvey, A. In Gericke N. (Ed.), Personal communication to Nigel Gericke, 2008. Search in Google Scholar

74. Napoletano M, Norcini G, Pellacini F et al. Phthalazine PDE4 inhibitors. Part 2: the synthesis and biological evaluation of 6-methoxy-1,4-disubstituted derivatives. Bioorg Med Chem Lett. 2001;11(1):33-7.10.1016/S0960-894X(00)00587-4 Search in Google Scholar

75. Houslay, M, Schafer, P, Zhang, K. Keynote review: Phosphodiesterase-4 as a therapeutic target. Drug Discovery Today. 2005; 15:11503.10.1016/S1359-6446(05)03622-6 Search in Google Scholar

76. Fujimaki, K, Morinobu, S, Duman, R. Administration of a cAMP Phosphodiesterase 4 Inhibitor Enhances Antidepressant-Induction of BDNF mRNA in Rat Hippocampus. Neuropsychopharmacol, 2000; 22: 42-51.10.1016/S0893-133X(99)00084-6 Search in Google Scholar

eISSN:
2719-5384
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other