Accès libre

Analysis of Selected Models of Body Impedance in the Assessment of Electric Shock Possibility in the Ship’s Power Supply Grids

  
05 sept. 2025
À propos de cet article

Citez
Télécharger la couverture

Fig. 1.

Typical ship’s electric network [12]
Typical ship’s electric network [12]

Fig. 2.

Typical ship’s electrical grid insulation status control system [12]. 1 – DC voltage source, 2 – Insulation resistance meter (Megohmmeter), 3 – singal relay, 4 – limiting resistor, 5 – inductor (suppressor), 6 – DC component blocking capacitor
Typical ship’s electrical grid insulation status control system [12]. 1 – DC voltage source, 2 – Insulation resistance meter (Megohmmeter), 3 – singal relay, 4 – limiting resistor, 5 – inductor (suppressor), 6 – DC component blocking capacitor

Fig. 3.

Single phase earth-fault in ship’s electrical network with neutral point isolated. A – earth-fault point [13]
Single phase earth-fault in ship’s electrical network with neutral point isolated. A – earth-fault point [13]

Fig. 4.

Human body electrical shock circuit in the ship’s electrical grid
Human body electrical shock circuit in the ship’s electrical grid

Fig. 5.

Simplified resistive Model (A) of human body impedance [24,25]
Simplified resistive Model (A) of human body impedance [24,25]

Fig. 6.

IEC 60990 Model (B) of human body impedance [14]
IEC 60990 Model (B) of human body impedance [14]

Fig. 7.

V. De Santis Model (C) of human body impedance [15]
V. De Santis Model (C) of human body impedance [15]

Fig. 8.

Freiberger Model (D) of human body impedance [16]
Freiberger Model (D) of human body impedance [16]

Fig. 9.

MATLAB-Simulink model utilized for analysis
MATLAB-Simulink model utilized for analysis

Fig. 10.

Earth fault current obtained for tested models
Earth fault current obtained for tested models

Fig. 11.

Impact of changes in the supply voltage Uz on the value of the shock current IR
Impact of changes in the supply voltage Uz on the value of the shock current IR

Fig. 12.

Impact of changes in the supply voltage frequency f on the value of the shock current IR
Impact of changes in the supply voltage frequency f on the value of the shock current IR

Fig. 13.

Impact of changes in the insulation resistance Riso on the value of the shock current IR
Impact of changes in the insulation resistance Riso on the value of the shock current IR

Fig. 14.

Impact of changes in Ground capacitance CE on the value of the shock current IR
Impact of changes in Ground capacitance CE on the value of the shock current IR

Analysis of the impact of changes in insulation resistance Riso on the value of shock current IR – selected points

Insulation resistance Riso [kΩ]
1000 800 600 500 400 300 200
Shock current IR [A] A 0,0300 0,0301 0,0301 0,0301 0,0300 0,0299 0,0299
B 0,0288 0,0287 0,0287 0,0286 0,0286 0,0285 0,0284
C 0,0244 0,02522 0,0233 0,0253 0,0237 0,0240 0,0249
D 0,0249 0,0249 0,0248 0,0248 0,0247 0,0247 0,0245
Insulation resistance Riso [kΩ]
100 50 40 30 20 10 1
Shock current IR [A] A 0,0301 0,0314 0,0324 0,0346 0,0399 0,0580 0,173
B 0,0282 0,0286 0,0294 0,03083 0,0345 0,0465 0,0995
C 0,0245 0,0253 0,0265 0,0269 0,0304 0,0386 0,0780
D 0,0243 0,0247 0,0252 0,0263 0,0292 0,0382 0,0695

Analysis of the impact of changes in the supply voltage frequency f on the value of the shock current IR – selected points

Supply voltage frequency f [Hz]
48,5 48,5 48,5 48,5 48,5 48,5 48,5
Shock current IR [A] A 0,0296 0,0298 0,0299 0,0301 0,0303 0,0306 0,0296
B 0,0283 0,0285 0,0286 0,0288 0,0289 0,0292 0,0283
C 0,0245 0,0245 0,0245 0,0252 0,0244 0,0254 0,0245
D 0,0246 0,0248 0,0248 0,0249 0,0250 0,0252 0,0246

Analysis of the impact of changes in ground capacitance CE on the value of shock current IR – selected points

Ground capacitance CE [μF]
0,05 0,1 0,14 0,5 1 2 3
Shock current IR [A] A 0,0109 0,0216 0,0301 0,0982 0,1583 0,2037 0,2177
B 0,0107 0,0210 0,0288 0,0764 0,0994 0,1101 0,1130
C 0,00973 0,0189 0,0244 0,0519 0,0726 0,0812 0,0782
D 0,0102 0,0189 0,0249 0,0534 0,0647 0,0709 0,0728
Ground capacitance CE [μF]
4 5 6 8 10 20 30
S h A 0,2234 0,2260 0,2278 0,2296 0,2304 0,2311 0,2316
B 0,1140 0,1148 0,1151 0,1155 0,1157 0,1160 0,1162
C 0,0864 0,0874 0,0876 0,0884 0,0890 0,0901 0,0899
D 0,0739 0,0746 0,0750 0,0754 0,0756 0,0761 0,0763

Analysis of the impact of changes in the supply voltage Uz on the value of the shock current IR – selected points

Supply voltage UZ [V]
360 370 380 390 400 410 420
Shock current IR [A] A 0,0271 0,0279 0,0286 0,0293 0,0301 0,0308 0,0316
B 0,0259 0,0266 0,0273 0,0280 0,0288 0,0295 0,0302
C 0,0215 0,0231 0,0239 0,0243 0,0252 0,0259 0,0264
D 0,0224 0,0230 0,0236 0,0243 0,025 0,0255 0,0261