À propos de cet article

Citez

Global Energy Review: CO2 Emissions in 2021 Global emissions rebound sharply to highest ever level. 2021. Search in Google Scholar

Gibbins J, Chalmers H. Carbon capture and storage. Energy Policy. 2008;36(12):4317–22. Available from: http://dx.doi.org/10.1016/j.enpol.2008.09.058 Search in Google Scholar

De Coninck H, Stephens JC, Metz B. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. Energy Policy. 2009;37(6):2161–5. Available from: http://dx.doi.org/10.1016/j.enpol.2009.01.020 Search in Google Scholar

Zhao L, Zhao R, Deng S, Tan Y, Liu Y. Integrating solar Organic Rankine Cycle into a coal-fired power plant with amine-based chemical absorption for CO2 capture. Int J Greenhouse Gas Control. 2014;31:77–86. Available from: http://dx.doi.org/10.1016/j.ijggc.2014.09.025 Search in Google Scholar

Jiang L, Wang RQ, Gonzalez-Diaz A, Smallbone A, Lamidi RO, Roskilly AP. Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery. Appl Therm Eng. 2020;169(114973):114973. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2020.114973 Search in Google Scholar

Mondal MK, Balsora HK, Varshney P. Progress and trends in CO2 capture/separation technologies: A review. Energy (Oxf). 2012;46(1):431–41. Available from: http://dx.doi.org/10.1016/j.energy.2012.08.006 Search in Google Scholar

Zhao R, Deng S, Liu Y, Zhao Q, He J, Zhao L. Carbon pump: Fundamental theory and applications. Energy (Oxf). 2017;119:1131–43. Available from: http://dx.doi.org/10.1016/j.energy.2016.11.076 Search in Google Scholar

Lian Y, Deng S, Li S, Guo Z, Zhao L, Yuan X. Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): Optimization of reactor geometry. Int J Greenhouse Gas Control. 2019;85:187–98. Available from: http://dx.doi.org/10.1016/j.ijggc.2019.03.029 Search in Google Scholar

He J, Deng S, Zhao L, Zhao R, Li S. A numerical analysis on energy-efficiency performance of temperature swing adsorption for CO 2 capture. Energy Procedia. 2017;142:3200–7. Available from: http://dx.doi.org/10.1016/j.egypro.2017.12.490 Search in Google Scholar

Wang YN, Pfotenhauer JM, Zhi XQ, Qiu LM, Li JF. Transient model of carbon dioxide desublimation from nitrogen-carbon dioxide gas mixture. Int J Heat Mass Transf. 2018;127:339–47. Available from: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.068 Search in Google Scholar

Lee S-Y, Park S-J. A review on solid adsorbents for carbon dioxide capture. J Ind Eng Chem. 2015;23:1–11. Available from: http://dx.doi.org/10.1016/j.jiec.2014.09.001 Search in Google Scholar

Younas M, Sohail M, Leong LK, Bashir MJK, Sumathi S. Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol (Tehran). 2016;13(7):1839–60. Available from: http://dx.doi.org/10.1007/s13762-016-1008-1 Search in Google Scholar

Mondino G, Grande CA, Blom R, Nord LO. Evaluation of MBTSA technology for CO2 capture from waste-to-energy plants. Int J Greenhouse Gas Control. 2022;118(103685):103685. Available from: http://dx.doi.org/10.1016/j.ijggc.2022.103685 Search in Google Scholar

Kadambi JR. Principles of gas–solid flows by L.-S. Fan and C. Zhu, Cambridge University Press, 1998; p. 557. Int J Multiph Flow. 2001;27(5):947–8. Available from: http://dx.doi.org/10.1016/s0301-9322(00)00072-0 Search in Google Scholar

Wang J, Yuan X, Deng S, Zeng X, Yu Z, Li S, et al. Waste polyethylene terephthalate (PET) plastics-derived activated carbon for CO2 capture: a route to a closed carbon loop. Green Chem. 2020;22(20):6836–45. Available from: http://dx.doi.org/10.1039/d0gc01613f Search in Google Scholar

Bahrehmand H, Bahrami M. An analytical design tool for sorber bed heat exchangers of sorption cooling systems. Int J Refrig. 2019;100:368–79. Available from: http://dx.doi.org/10.1016/j.ijrefrig.2019.02.003 Search in Google Scholar

Golparvar B, Niazmand H, Sharafian A, Ahmadian Hosseini A. Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system. Appl Energy. 2018;232:504–16. Available from: http://dx.doi.org/10.1016/j.apenergy.2018.10.002 Search in Google Scholar

Zhang LZ. A three-dimensional non-equilibrium model for an intermittent adsorption cooling system. Sol Energy. 2000;69(1):27–35. Available from: http://dx.doi.org/10.1016/s0038-092x(00)00010-4 Search in Google Scholar

Clausse M, Bonjour J, Meunier F. Adsorption of gas mixtures in TSA adsorbers under various heat removal conditions. Chem Eng Sci. 2004;59(17):3657–70. Available from: http://dx.doi.org/10.1016/j.ces.2004.05.027 Search in Google Scholar

Hofer G, Fuchs J, Schöny G, Pröll T. Heat transfer challenge and design evaluation for a multi-stage temperature swing adsorption process. Powder Technol . 2017;316:512–8. Available from: http://dx.doi.org/10.1016/j.powtec.2016.12.062 Search in Google Scholar

Pirklbauer J, Schöny G, Pröll T, Hofbauer H. Impact of stage configurations, lean-rich heat exchange and regeneration agents on the energy demand of a multistage fluidized bed TSA CO2 capture process. Int J Greenhouse Gas Control. 2018;72:82–91. Available from: http://dx.doi.org/10.1016/j.ijggc.2018.03.018 Search in Google Scholar

Mondino G, Grande CA, Blom R, Nord LO. Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. Int J Greenhouse Gas Control. 2019;85:58–70. Available from: http://dx.doi.org/10.1016/j.ijggc.2019.03.021 Search in Google Scholar

Schöny G, Dietrich F, Fuchs J, Pröll T, Hofbauer H. A Multi-Stage Fluidized Bed System for Continuous CO2 Capture by Means of Temperature Swing Adsorption – First Results from Bench Scale Experiments. Powder Technology 2007,316:519–27. Available from: https://doi.org/10.1016/j.powtec.2016.11.066. Search in Google Scholar

Mitra S, Muttakin M, Thu K, Saha BB. Study on the influence of adsorbent particle size and heat exchanger aspect ratio on dynamic adsorption characteristics. Appl Therm Eng. 2018;133:764–73. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2018.01.015 Search in Google Scholar

Hofer G, Schöny G, Fuchs J, Pröll T. Investigating wall-to-bed heat transfer in view of a continuous temperature swing adsorption process. Fuel Process Technol. 2018;169:157–69. Available from: http://dx.doi.org/10.1016/j.fuproc.2017.09.024 Search in Google Scholar

Sharafian A, McCague C, Bahrami M. Impact of fin spacing on temperature distribution in adsorption cooling system for vehicle A/C applications. Int J Refrig. 2015;51:135–43. Available from: http://dx.doi.org/10.1016/j.ijrefrig.2014.12.003 Search in Google Scholar

Mondino G, Grande CA, Blom R, Nord LO. Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. SSRN Electron J. 2019; Available from: http://dx.doi.org/10.2139/ssrn.3366315 Search in Google Scholar

Zima W, Grądziel G, Cebula A, Rerak M, Kozak-Jagieła E, Nord LO, et al. Mathematical Model of a Power Boiler Operation Under Rapid Load Changes, PRES’21 0484 Proceedings of the 24th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. Vol. 1. Brno, CZ; 2021. Search in Google Scholar

Mondino G, Grande CA, Blom R. Effect of gas recycling on the performance of a moving bed temperature-swing (MBTSA) process for CO2 capture in a coal fired power plant context. Energies. 2017;10(6):745. http://dx.doi.org/10.3390/en10060745 Search in Google Scholar

Zhao B, Wang X, Xu Y, Liu B, Cao S, Zhao Q. Reduction of dust deposition in air-cooled condensers in thermal power plants by Ni–P-based coatings. Clean Technol Environ Policy. 2021;23(6):1727–36. Available from: http://dx.doi.org/10.1007/s10098-021-02055-6 Search in Google Scholar

Taler D. A new heat transfer correlation for transition and turbulent fluid flow in tubes. Int J Therm Sci. 2016;108:108–22. Available from: http://dx.doi.org/10.1016/j.ijthermalsci.2016.04.022 Search in Google Scholar

Filonienko GK. Friction factor for turbulent pipe flow. Teploenergetika. 1954;40–4. Search in Google Scholar

Majchrzak A. Testowanie i optymalizacja stałych sorbentów do usuwania CO2 ze spalin, PhD thesis. 2017. Search in Google Scholar

Mondino G, Nord LO, Grande CA, Arstad B, Plassen M, Håkonsen S, et al. Initial operation of a continuous lab-scale MBTSA pilot using activated carbon adsorbent. SSRN Electron J. 2021; Available from: http://dx.doi.org/10.2139/ssrn.3812354 Search in Google Scholar