Accès libre

Fatigue Behaviour of Medium Carbon Steel Assessed by the Barkhausen Noise Method

À propos de cet article

Citez

Heyes AM. Automotive component failures. Eng Fail Anal. 1998;5(2):129–141. Available from: https://doi.org/10.1016/S1350-6307(98)00010-7 Search in Google Scholar

Meyers MA., Chawla KK. Mechanical behaviour of materials. Cambridge University Press, Cambridge, second edition, 2009. Search in Google Scholar

Bhaumik SK. Fatigue fracture of crankshaft of an aircraft engine. Eng Fail Anal. 2002;9(3):255–263. Available from: https://doi.org/10.1016/S1350-6307(01)00022-X Search in Google Scholar

Fonte M, Anes V, Duarte P, Reis L, Freitas M. Crankshaft failure analysis of a boxer diesel motor. Eng Fail Anal. 2015;5:109–115. Available from: https://doi.org/10.1016/j.engfailanal.2015.03.014 Search in Google Scholar

Godec M, Mandrino Dj, Jenko M. Investigation of the fracture of car’s drive shaft. Eng Fail Anal. 2009;16(4):1252–1261. Available from: https://doi.org/10.1016/j.engfailanal.2008.08.022 Search in Google Scholar

Tjernberg A. Fatigue lives for induction hardened shafts with subsur-face crack initiation. Eng Fail Anal. 2002; 9(1):45–61. Available from: https://doi.org/10.1016/S1350-6307(00)00036-4 Search in Google Scholar

Yu Z, Xu X. Failure analysis of an idler gear of diesel engine gear-box. Eng Fail Anal. 2006;13:1092–1100. Available from: https://doi.org/10.1016/j.engfailanal.2005.07.015 Search in Google Scholar

Chen B, Wang C, Wang P, Zheng S, Sun W. Research on fatigue damage in high-strength steel (FV520B) using nonlinear ultrasonic testing. Shock and Vibration 2020; 8(19):1–15. Available from: https://doi.org/10.1155/2020/8847704 Search in Google Scholar

Sarris G, Haslinger SG, Huthwaite P, Lowe MJS: Ultrasonic methods for the detection of near surface fatigue damage. NDT & E Int. 2023;135:1–13. Available from: https://doi.org/10.1016/j.ndteint.2023.102790 Search in Google Scholar

Kowalczyk D, Aniszewicz A. Experimental and simulation tests of 1MN screw coupling. Problemy Kolejnictwa. Rail. Rep. 2022;194: 97–102. Available from: https://doi.org/10.36137/1943E Search in Google Scholar

Bjørheim F, Siriwardane SC, Pavlou D. A review of fatigue damage detection and measurement techniques. Int. J. Fat. 2022;154:1–16. Available from: https://doi.org/10.1016/j.ijfatigue.2021.106556 Search in Google Scholar

Wu H, Ziman JA, Raghuraman SR, Nebel J-E, Weber F. Starke P.: Short-time fatigue life estimation for heat treated low carbon steels by applying electrical resistance and magnetic Barkhausen noise. Materials. 2023;16:1–21. Available from: https://doi.org/10.3390/ma16010032 Search in Google Scholar

Roye W. Ultrasonic testing of spot welds in the automotive industry. Krautkramer, SD 298, 11/99, 6 pages. Search in Google Scholar

Yuhas DE, Vorres CL, Remiasz JR, Gesch E, Yamane T. Nondestructive ultrasonic methods for quality assurance of brake pads. EuroBrake. 2012, April 16-18th 2012, Dresden Germany. Search in Google Scholar

Lamarre A. Ultrasonic phased-array for aircraft maintencance, Amstredam, November 2009, 76 slides. Available from: https://ndt.aero/images/docs/UTPAfor%20maintenance.pdf Search in Google Scholar

Wronkowicz A, Dragan K. Damage evaluation based on ultrasonic testing of composite aircraft elements and image analysis methods. MATEC Web of Conferences 204, IMIEC 2018, 06003. Available from: https://doi.org/10.1051/matecconf/201820406003 Search in Google Scholar

Luziński R, Ziemkiewicz J, Synaszko P, Zyluk A, Dragan KA. Comparison of composite specimens damage area measurements performed using pulsed thermography and ultrasonic NDT methods. Fat. Air. Struc. 2019; 2019(11): 68–77. Available from: https://doi.org/10.2478/fas-2019-0007 Search in Google Scholar

Drelich R, Rosiak M, Pakuła M. Application of non-contact ultrasonic method in air to study fiber-cement corrugated boards, Bull. Pol. Ac. Tech., 2021;69(2). Available from: https://doi.org/10.24425/bpasts.2021.136740 Search in Google Scholar

Callejas A, Palma R, Hernández-Figueirido D, Rus G. Damage detection using ultrasonic techniques in Concrete-Filled Steel Tubes (CFSTS) columns. Sensors. 2022;22,4400. Available from: https://doi.org/10.3390/s2212440 Search in Google Scholar

Mackiewicz S. Possibilities of ultrasonic evaluation of energetic steels as a result longterm exploitation (in Polish). Materiały Konferencyjne VII Sympozjum Informacyjno-Szkoleniowe „Diagnostyka i remonty długoeksploatowanych urządzeń energetycznych. Nowe problemy diagnostyczne na starych blokach energetycznych”, 05–07 October 2005, Ustroń, Poland. Search in Google Scholar

Hirao M, Ogi H, Suzuki N, Ohtani T. Ultrasonic attenuation peak during fatigue of polycrystalline copper. Acta Mater. 2000;48:517–524. Available from: https://doi.org/10.1016/S1359-6454(99)00346-8 Search in Google Scholar

Luo Z, Meng Y, Fan S, Lin L. Assessment of surface/subsurface damage in early-stage fatigue: A new attempt based on LCR wave. Int. J Fat. 2023;170:107537. Available from: https://doi.org/10.1016/j.ijfatigue.2023.107537 Search in Google Scholar

Luo Z, Wang X, Ma Z, Zou L, Zhu X, Lin L. Combined quantitative evaluation on early-stage fatigue damage of coarse-grained austenite stainless steel based on EBSD and ultrasonic technique. Ultrasonics 2020;103:106090. Available from: https://doi.org/10.1016/j.ultras.2020.106090 Search in Google Scholar

Kamaya M, Kuroda M. Fatigue damage evaluation using backscatter diffraction. Mater. Trans. 2011;52:1168–1176. Available from: https://doi.org/10.1016/S1359-6454(99)00346-810.2320/matertrans.M2011014 Search in Google Scholar

Luo Z, Dong H, Ma Z, Zou L, Zhu X, Lin L. Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel. Acta Physica Sinica. 2018;67: 238102. Available from: https://doi.org/10.7498/aps.67.20181251. Search in Google Scholar

Piotrowski L, Augustyniak B, Chmielewski M, Tomaš I. The influence of plastic deformation on magnetoelastic properties of the CSN12021 grade steel. J Magn Magn Mater. 2009;321(15):2331–2335. Available from: https://doi.org/10.1016/j.jmmm.2009.02.028 Search in Google Scholar

Blaow M, Evans JT, Shaw BA. The effect of microstructure and applied stress on magnetic Barkhausen emission in induction hardened steel. J Mater Sci. 2007;42(12):4364–4371. Available from: https://doi.org/10.1007/s10853-006-0631-5 Search in Google Scholar

Piech T. Magnetic research. Application of Barkhausen effect (in Polish). Biuro Gamma, Warsaw, 1998. Search in Google Scholar

Jiles D. Introduction to magnetism and magnetic materials. CRC Press, Boca Raton. 1998. Search in Google Scholar

Guyon M, Mayos M. Nondestructive evaluation of fatigue damage of steels using magnetic techniques. Review of Progress in Quantitative Nondestructive Evaluation. 14. Edited by D.O. Thompson and D.E. Chimenti, Plenum Press, New York, 1995, 1717–1724. Search in Google Scholar

Palma ES, Mansur TR, Ferreira Silna Jr S, Alvarenga Jr A. Fatigue damage assessment in AISI 8620 steel using Barkhausen noise. Int J Fat. 2005;27(6):659-665. Available from: https://doi.org/10.1016/j.ijfatigue.2004.11.005 Search in Google Scholar

da Silva Junior SF, Mansur TR, Aguiar AE, Palma ES, Marques PV. Damage accumulation study in fatigue testing using Barkhausen noise. Proceedings of COBEM 2003, 17th International Congress of Mechanical Engineering, 10–14 November 2003, Sao Paulo, Brazil. Available from: https://www.abcm.org.br/anais/cobem/2003/html/pdf/COB03-0558.pdf Search in Google Scholar

Sagar PS, Parida N, Das S, Dobmann G, Bhattacharya DK. Magnetic Barkhausen emission to evaluate fatigue damage in a low carbon structural steel. International Journal of Fatigue. 2005;27(3): 317–322. Available from: https://doi.org/10.1016/j.ijfatigue.2004.06.015 Search in Google Scholar

Augustyniak B, Piotrowski L, Chmielewski M, Kowalewski Z. Comparative study with magnetic techniques of P91 and 13HMF steels properties subjected to fatigue tests. J Elec Eng. 2012;63(7):15–18. Available from: http://iris.elf.stuba.sk/JEEEC/data/pdf/7s_112-04.pdf. Search in Google Scholar

Palma ES, Junior AA, Mansur TR, Pinto JMA. Fatigue damage in AISI/SAE 8620 steel. Proceedings of COBEM 2003, 17th International Congress of Mechanical Engineering, 10–14 November 2003, Sao Paulo, Brazil. Available from: https://www.abcm.org.br/anais/cobem/2003/html/pdf/COB03-0066.pdf Search in Google Scholar

Morsy MA, El-Kashif E. Repair welding reclamation of 42CrMo4 and C45 steels. Proceedings of IIW 2017 International Conference, June, 29-30 Shanghai, R.P. China. Search in Google Scholar

Costa LL, Brito AMG., Rosiak A, Schaeffer L. Microstructure evolution of 42CrMo4 during hot forging process of hollow shafts for wind turbines. Int. J Adv. Man. Tech. 2020; 106:511–517. Available from: https://doi.org/10.1007/s00170-019-04642-w Search in Google Scholar

Fischer A, Scholtes B, Niendorf T. Influence of deep rolling and induction hardening on microstructure evolution of crankshaft sections made from 38MnSiVS5 and 42CrMo4. HTM-J Heat Treat Mater. 2021;76:175-179. Available from: https://doi.org/10.1515/htm-2021-0002 Search in Google Scholar

Basavaraj Y, Joshi R, Setty GR. FEA of NX-11 unigraphics modelled connecting rod using different materials. Mater Today: Proc. 2021;46:2807–2813. Available from: https://doi.org/10.1016/j.matpr.2021.02.620 Search in Google Scholar

Wieczorek AN. Studies on the combined impact of external dynamic forces and quartz abrasive on the wear of chain wheels made of 42CrMo4 steel which are used in conveyors [in Polish]. Autobusy. 2016;6:1207–1210. Search in Google Scholar

Das S, Mukhopadhyay G, Bhattacharyya S. Failure analysis of axle shaft of a fork lift. Case Studies in Eng Fail Anal. 2015;3:46–51. Available from: https://doi.org/10.1016/j.csefa.2015.01.003 Search in Google Scholar

Moorthy V, Choudhury BK, Vaidyanathan S, Jayakumar T, Rao KBS, Raj B. An assessment of low cycle fatigue using magnetic Barkhausen emission in 9Cr-1Mo ferritic steel. Int J Fat. 1999;21(3):263–269. Available from: https://doi.org/10.1016/S0142-1123(98)00079-6 Search in Google Scholar

Polák J, Man J. Mechanisms of extrusion and intrusion formation in fatigue crystalline materials. Mater Sci Eng A. 2014;596:15-24. Available from: https://doi.org/10.1016/j.msea.2013.12.005 Search in Google Scholar

Anglada-Rivera J, Padovese LR, Capó-Sánchez J. Magnetic Bark-hausen noise and hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size. J Magn Magn Mater. 2001;231(2-3):299–306. Available from: https://doi.org/10.1016/S0304-8853(01)00066-X Search in Google Scholar

Stewart DM, Stevens KJ, Kaiser AB. Magnetic Barkhausen noise analysis of stress in steel. Curr Appl Phys. 2004;4(2-4):308–311. Available from: https://doi.org/10.1016/j.cap.2003.11.035 Search in Google Scholar

Tomita Y, Hashimoto K, Osawa N. Nondestructive estimation of fatigue damage for steel by Barkhausen noise analysis. NDT & E Inter. 1996;29(5):275–280. Available from: https://doi.org/10.1016/S0963-8695(96)00030-8 Search in Google Scholar