Accès libre

Influence of Fluid Rheology on Blood Flow Haemodynamics in Patient-Specific Arterial Networks of Varied Complexity – In-Silico Studies

À propos de cet article

Citez

Reorowicz P, Obidowski D, Klosinski P, Szubert W, Stefanczyk L, Jozwik K. Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. J Biomech. 2014;47(7): 1642–51. Search in Google Scholar

Caballero AD, Laín S. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput Methods Biomech Biomed Engin. 2015;18(11):1200–16. Search in Google Scholar

Doost SN, Zhong L, Su B, Morsi YS. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle. Comput Methods Programs Biomed [Internet]. 2016;127:232–47. Available from: http://dx.doi.org/10.1016/j.cmpb.2015.12.020 Search in Google Scholar

Johnston BM, Johnston PR, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. J Biomech. 2004;37(5):709–20. Search in Google Scholar

Jodko D, Jeckowski M, Tyfa Z. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue. Int j numer method biomed eng. 2022;38(8):1–23. Search in Google Scholar

Reorowicz P, Tyfa Z, Obidowski D, Wiśniewski K, Stefańczyk L, Jóźwik K, et al. Blood flow through the fusiform aneurysm treated with the Flow Diverter stent – Numerical investigations. Biocybern Biomed Eng. 2022;42(1):375–90. Search in Google Scholar

Tyfa Z, Obidowski D, Reorowicz P, Stefańczyk L, Fortuniak J, Jóźwik K. Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries. Biocybern Biomed Eng. 2018;38(2):228–42. Search in Google Scholar

Wisniewski K, Tomasik B, Tyfa Z, Reorowicz P, Bobeff EJ. Porous Media Computational Fluid Dynamics and the Role of the First Coil in the Embolization of Ruptured Intracranial Aneurysms. J Clin Med. 2021;10(7):1348. Search in Google Scholar

Cho YI, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology. 1991;28(3–4):241–62. Search in Google Scholar

Gijsen FJH, Van De Vosse FN, Janssen JD. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech. 1999; 32(7):705–13. Search in Google Scholar

Shinde S, Mukhopadhyay S, Mukhopadhyay S. Investigation of flow in an idealized curved artery: comparative study using cfd and fsi with newtonian and non-newtonian fluids. J Mech Med Biol [Internet]. 2022;22:2250010. Available from: https://doi.org/10.1142/S0219519422500105 Search in Google Scholar

Boyd J, Buick JM. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method. Phys Med Biol. 2007;52(20):6215–28. Search in Google Scholar

Mendieta JB, Fontanarosa D, Wang J, Paritala PK, McGahan T, Lloyd T, et al. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech Model Mechanobiol [Internet]. 2020;19(5):1477–90. Available from: https://doi.org/10.1007/s10237-019-01282-7. Search in Google Scholar

Razavi A, Shirani E, Sadeghi MR. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech [Internet]. 2011;44(11):2021–30. Available from: http://dx.doi.org/10.1016/j.jbiomech.2011.04.023 Search in Google Scholar

Johnston BM, Johnston PR, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: Transient simulations. J Biomech. 2006;39(6):1116–28. Search in Google Scholar

Karimi S, Dabagh M, Vasava P, Dadvar M, Dabir B, Jalali P. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J Nonnewton Fluid Mech [Internet]. 2014;207:42–52. Available from: http://dx.doi.org/10.1016/j.jnnfm.2014.03.007 Search in Google Scholar

Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME. 2008;130(7):0780011–4. Search in Google Scholar

Obidowski D, Reorowicz P, Witkowski D, Sobczak K, Jóźwik K. Methods for determination of stagnation in pneumatic ventricular assist devices. Int J Artif Organs. 2018;41(10):653–63. Search in Google Scholar

Rayz VL, Boussel L, Lawton MT, Acevedo-Bolton G, Ge L, Young WL, et al. Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation. Ann Biomed Eng. 2008;36(11):1793–804. Search in Google Scholar

Logerfo FW, Nowak MD, Quist WC. Structural details of boundary layer separation in a model human carotid bifurcation under steady and pulsatile flow conditions. J Vasc Surg. 1985;2(2):263–9. Search in Google Scholar

Subramaniam T, Rasani MR. Pulsatile CFD Numerical Simulation to investigate the effect of various degree and position of stenosis on carotid artery hemodynamics. J Adv Res Appl Sci Eng Technol. 2022;26(2):29–40. Search in Google Scholar

Nagai Y, Kemper MK, Earley CJ, Metter EJ. Blood-flow velocities and their relationships in carotid and middle cerebral arteries. Ultrasound Med Biol. 1998;24(8):1131–6. Search in Google Scholar

Pomella N, Wilhelm EN, Kolyva C, González-Alonso J, Rakobowchuk M, Khir AW. Common Carotid Artery Diameter, Blood Flow Velocity and Wave Intensity Responses at Rest and during Exercise in Young Healthy Humans: A Reproducibility Study. Ultrasound Med Biol. 2017;43(5):943–57. Search in Google Scholar

Soleimani E, Mokhtari-Dizaji M, Fatouraee N, Saberi H. Assessing the blood pressure waveform of the carotid artery using an ultra-sound image processing method. Ultrasonography. 2017;36(2): 144–52. Search in Google Scholar

Lantz BM, Forester JM, Link DP, Holcroft JW. Regional distribution of cardiac output: normal values in man determined by video dilution technique. Am J Roentgenol. 1981;137(5):903–7. Search in Google Scholar

Stein PD, Sabbah HN, Anbe DT, Walburn FJ. Blood velocity in the abdominal aorta and common iliac artery of man. Biorheology. 1979;16(3):249–55. Search in Google Scholar

Bruss ZS, Raja A. Physiology, Stroke Volume. In: StatPearls Publishing. StatPearls Publishing; 2022. Search in Google Scholar

Czernicki Z. Fizjologia mózgowego przepływu krwi. In: Czepko R, editor. Wybrane zagadnienia diagnostyki i leczenia malformacji naczyniowych ośrodkowego układu nerwowego. Uniwersytet Jagiellonski - Wydawnictwo Uniwersytetu Jagiellonskiego; 2007. 15–20. Search in Google Scholar

Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, et al. Distribution of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab. 2017;37(8):2848–56. Search in Google Scholar

Majka J. Fizjologia krążenia mózgowego. In: Szczudlik A, Członkowa A, Kwieciński H, Słowik A, editors. Udar mózgu. 1st ed. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego; 2007;26–41. Search in Google Scholar

Seidel E, Eicke BM, Tettenborn B, Krummenauer F. Reference values for vertebral artery flow volume by duplex sonography in young and elderly adults. Stroke. 1999;30(12):2692–6. Search in Google Scholar

Amin-Hanjani S, Du X, Pandey DK, Thulborn KR, Charbel FT. Effect of age and vascular anatomy on blood flow in major cerebral vessels. J Cereb Blood Flow Metab. 2015;35(2):312–8. Search in Google Scholar

Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J. Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab. 2015;35(December 2014):648–54. Search in Google Scholar

Apostolidis AJ, Moyer AP, Beris AN. Non-Newtonian effects in simulations of coronary arterial blood flow. J Nonnewton Fluid Mech [Internet]. 2016;233:155–65. Available from: http://dx.doi.org/10.1016/j.jnnfm.2016.03.008 Search in Google Scholar

Gharahi H, Zambrano BA, Zhu DC, DeMarco JK, Baek S. Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int J Adv Eng Sci Appl Math. 2016;8(1):46–60. Search in Google Scholar

Moradicheghamahi J, Sadeghiseraji J, Jahangiri M. Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery. Int J Mech Sci [Internet]. 2019;150(October 2017):393–403. Available from: https://doi.org/10.1016/j.ijmecsci.2018.10.046 Search in Google Scholar

Razavi SE, Farhangmehr V, Zendeali N. Numerical investigation of the blood flow through the middle cerebral artery. BioImpacts [Internet]. 2018;8(3):195–200. Available from: https://doi.org/10.15171/bi.2018.22 Search in Google Scholar

Oliveira IL, Santos GB, Gasche JL, Militzer J, Baccin CE. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases. J Biomech Eng [Internet]. 2021;143(7):071006. Available from: https://doi.org/10.1115/1.4050539 Search in Google Scholar