Accès libre

Energy Conversion in Systems-Contained Laser-Irradiated Metallic Nanoparticles – Comparison of Results from Analytical Solutions and Numerical Methods

À propos de cet article

Citez

Strutt JW. On the scattering of light by small particles. London, Edinburgh, Dublin Philos Mag J Sci. 1871;41(275):447–54. Search in Google Scholar

van de Hulst HC. Light scattering by small particles. Dover Publications, Inc. New York: John Wiley & Sons; 1957. Search in Google Scholar

Lorenz L. Light propagation in and outside a sphere illuminated by plane waves of light. Eur Phys J H. 2019;44(2):77–135. Search in Google Scholar

Gouesbet G. Generalized Lorenz-Mie theories and mechanical effects of laser light, on the occasion of Arthur Ashkin’s receipt of the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review. J Quant Spectrosc Radiat Transf. 2019;225:258–77. Search in Google Scholar

Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys. 1908;25(3):377–445. Search in Google Scholar

Bohren CF. Absorption and scattering of light by small particles. Absorption and scattering of light by small particles. 1983. Search in Google Scholar

Martin RJ. Mie scattering formulae for non-spherical particles. J Mod Opt. 1993;40(12):2467–94. Search in Google Scholar

Kumar S, Prasad SK, Banerjee J. Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model. Appl Math Model [Internet]. 2010;34(3):573–92. Available from: http://dx.doi.org/10.1016/j.apm.2009.06.026 Search in Google Scholar

Hussain SM, Goud BS, Madheshwaran P, Jamshed W, Pasha AA, Safdar R, et al. Effectiveness of Nonuniform Heat Generation (Sink) and Thermal Characterization of a Carreau Fluid Flowing across a Nonlinear Elongating Cylinder: A Numerical Study. ACS Omega. 2022;7(29):25309–20. Search in Google Scholar

Hussain SM, Jamshed W, Pasha AA, Adil M, Akram M. Galerkin finite element solution for electromagnetic radiative impact on viscid Williamson two-phase nanofluid flow via extendable surface. Int Commun Heat Mass Transf [Internet]. 2022;137:106243. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2022.106243 Search in Google Scholar

Shamshuddin MD, Abderrahmane A, Koulali A, Eid MR, Shahzad F, Jamshed W. Thermal and solutal performance of Cu/CuO nanoparticles on a non-linear radially stretching surface with heat source/sink and varying chemical reaction effects. Int Commun Heat Mass Transf [Internet]. 2021;129:105710. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2021.105710 Search in Google Scholar

Siegel R, Howell JR. Thermal radiation heat transfer - Third Edition. Hemisphere Publishing Corporation. 1992. Search in Google Scholar

Zaccagnini F, Radomski P, Sforza ML, Ziółkowski P, Lim S-I, Jeong K-U, et al. White light thermoplasmonic activated gold nanorod arrays enable the photo-thermal disinfection of medical tools from bacterial contamination. J Mater Chem B. 2023; Search in Google Scholar

Radomski P, Ziółkowski P, De Sio L, Mikielewicz D. Importance and form of source element in the energy equation in reference to the photothermoablation of thin films and nanoparticles. In: 9th Wdzydzeanum Workshop on Fluid-Solid Interaction. 2021. p. 24. Search in Google Scholar

Radomski P, De Sio L, Mikielewicz D. Computational fluid dynamics simulation of heat transfer from densely packed gold nanoparticles to isotropic media. Arch Thermodyn. 2021;42(3):87–113. Search in Google Scholar

Michaelides EE. Transport properties of nanofluids. A critical review. Vol. 38, Journal of Non-Equilibrium Thermodynamics. 2013. 1–79 p. Search in Google Scholar

E.Black S. Laser Ablation: Effects and Applications. New York; 2011. 99–226 p. Search in Google Scholar

Ziółkowski P, Szewczuk-Krypa N, Butterweck A, Stajnke M, Głuch S, Drosińska-Komor M, et al. Comprehensive thermodynamic analysis of steam storage in a steam cycle in a different regime of work: A zero-dimensional and three-dimensional approach. J Energy Resour Technol. 1899;143(5):050905. Search in Google Scholar

Mochnacki B, Paruch M. Cattaneo-Vernotte bio-heat transfer equation. Identification of external heat flux and relaxation time in domain of heated skin tissue. Comput Assist Methods Eng Sci. 2018;25(2–3):71–80. Search in Google Scholar

Zheng Q, Shen X, Sokolowski-Tinten K, Li RK, Chen Z, Mo MZ, et al. Dynamics of Electron-Phonon Coupling in Bicontinuous Nanoporous Gold. J Phys Chem C. 2018;122(28):16368–73. Search in Google Scholar

Medvedev N, Milov I. Electron–Phonon Coupling and Nonthermal Effects in Gold Nano-Objects at High Electronic Temperatures. Materials (Basel). 2022;15(14):1–11. Search in Google Scholar

Warrier P, Teja A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett. 2011;6(1):247. Search in Google Scholar

Feng B, Li Z, Zhang X. Prediction of size effect on thermal conductivity of nanoscale metallic films. Thin Solid Films. 2009;517(8):2803–7. Search in Google Scholar

Wang BX, Zhou LP, Peng XF. Surface and size effects on the specific heat capacity of nanoparticles. Int J Thermophys. 2006;27(1):139–51. Search in Google Scholar

Smoluchowski M. O przewodnictwie cieplnem gazów według dotychczasowych teoryj i doświadczeń. Pr Mat. 1898;10(12):33–64. Search in Google Scholar

Sebastian V, Carminat R, Chantrenne P, Dilhaire S. Microscale and Nanoscale Heat Transfer. Vol. 9, Optics & Laser Technology. Berlin; 2007. Search in Google Scholar

Kang Y, Zhao Z, Li B. A method for calculating average electric polarizability density of arbitrary small aperture. J Phys Conf Ser. 2018;1074(1). Search in Google Scholar

Sihvola A, Lindell I V. Polarizability and effective permittivity of layered and continuously inhomogeneous dielectric ellipsoids. J Electromagn Waves Appl. 1990;4(1):1–26. Search in Google Scholar

Royer P, Bijeon JL, Goudonnet JP, Inagaki T, Arakawa ET. Optical absorbance of silver oblate particles. Substrate and shape effects. Surf Sci. 1989;217(1–2):384–402. Search in Google Scholar

Royer P, Goudonnet JP, Warmack RJ, Ferrell TL. Substrate effects on surface-plasmon spectra in metal-island films. Phys Rev B. 1987;35(8):3753–9. Search in Google Scholar

Smoluchowski M. On conduction of heat by rarefied gases. Vol. 46, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1898. p. 192–206. Search in Google Scholar

Smoluchowski M V. Über den Temperatursprung bei Wärmeleitung in Gasen. Vol. 108, Akademie der Wissenschaften, Wien. 1898. p. 304-329. Search in Google Scholar

Adamowicz A. Determination of Thermal Diffusivity Values Based on the Inverse Problem of Heat Conduction - Numerical Analysis. Acta Mech Autom. 2022;16(4):399–407. Search in Google Scholar

Carslaw HS, Jaeger JC. Conduction of Heat in Solids. Oxford University Press. London; 1959. Search in Google Scholar

Domański R. Promieniowanie laserowe - oddziaływania na ciała stałe. Wydawnictwa Naukowo-Techniczne. Warszawa; 1990. 85–220 p. Search in Google Scholar

Ready JF. Mechanism of electron emission produced by a giant-pulse laser. Phys Rev. 1965;137(2A):A620–3. Search in Google Scholar

Bhandari A. Mathematical Modelling of Water-Based Fe3O4Nanofluid Due to Rotating Disc and Comparison with Similarity Solution. Acta Mech Autom. 2021;15(3):113–21. Search in Google Scholar

Kumar R, Singh G, Mikielewicz D. A New Approach for the Mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink. J Heat Transfer. 2018;140(7). Search in Google Scholar

Szymanski P, Mikielewicz D. Additive Manufacturing as a Solution to Challenges Associated with Heat Pipe Production. Materials (Basel). 2022;15(4). Search in Google Scholar

Blauciak K, Szymanski P, Mikielewicz D. The influence of loop heat pipe evaporator porous structure parameters and charge on its effectiveness for ethanol and water as working fluids. Materials (Basel). 2021;14(22). Search in Google Scholar

Miri R, Abbassi MA, Ferhi M, Djebali R. Second Law Analysis of MHD Forced Convective Nanoliquid Flow Through a Two-Dimensional Channel. Acta Mech Autom. 2022;16(4):417–31. Search in Google Scholar

Hafeez MB, Krawczuk M, Shahzad H. An Overview of Heat Transfer Enhancement Based Upon Nanoparticles Influenced By Induced Magnetic Field with Slip Condition Via Finite Element Strategy. Acta Mech Autom. 2022;16(3):200–6. Search in Google Scholar

Dennis SCR, Singh SN, Ingham DB. The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J Fluid Mech. 1980;101(2):257–79. Search in Google Scholar

Morsi SA, Alexander AJ. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech. 1972;55(2):193–208. Search in Google Scholar

Levenspiel O., Haider A. Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technol. 1989;58:63–70. Search in Google Scholar

Yang P, Wendisch M, Bi L, Kattawar G, Mishchenko M, Hu Y. Dependence of extinction cross-section on incident polarization state and particle orientation. J Quant Spectrosc Radiat Transf. 2011;112(12):2035–9. Search in Google Scholar

Mikielewicz D. Hydrodynamics and heat transfer in bubbly flow in the turbulent boundary layer. Int J Heat Mass Transf. 2003;46(2):207–20. Search in Google Scholar

Mikielewicz D, Wajs J, Andrzejczyk R, Klugmann M. Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels. Int J Refrig [Internet]. 2016;68:226–41. Available from: http://dx.doi.org/10.1016/j.ijrefrig.2016.03.005 Search in Google Scholar