À propos de cet article

Citez

Li X, Dong Y, Li Z, Xia Y. Experimental study on the temperature dependence of hyperelastic behavior of tire rubbers under moderate finite deformation. Rubber Chem Technol. 2011 Jun 1;84(2):215–28. Search in Google Scholar

Gordon M. The Physics of Rubber Elasticity (Third Edition). L. R. G. Treloar, Clarendon Press, Oxford. 1975 pp. xii + 370. Br Polym J. 1976 Mar;8(1):39–39. Search in Google Scholar

Bell CLM, Stinson D, Thomas AG. Measurement of Tensile Strength of Natural Rubber Vulcanizates at Elevated Temperature. Rubber Chem Technol. 1982 Mar 1;55(1):66–75. Search in Google Scholar

Stevenson A. The influence of low-temperature crystallization on the tensile elastic modulus of natural rubber. J Polym Sci Polym Phys Ed. 1983 Apr;21(4):553–72. Search in Google Scholar

D20 Committee. Test Method for Brittleness Temperature of Plastics and Elastomers by Impact [Internet]. ASTM International; [cited 2023 May 29]. http://www.astm.org/cgi-bin/resolver.cgi?D746-20 Search in Google Scholar

Hussein M. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene. Results Phys. 2018 Jun;9:511–7. Search in Google Scholar

Barlow C, Jayasuriya S, Suan Tan C. The World Rubber Industry [Internet]. 0 ed. Routledge; 2014 [cited 2023 May 29]. https://www.taylorfrancis.com/books/9781317829133 Search in Google Scholar

McKeen LW. Elastomers and Rubbers. In: The Effect of UV Light and Weather on Plastics and Elastomers [Internet]. Elsevier; 2019 [cited 2023 May 29]. p. 279–359. https://linkinghub.elsevier.com/retrieve/pii/B9780128164570000101 Search in Google Scholar

Ramesan MT, Anil Kumar T. Preparation And Properties Of Different Functional Group Containing Styrene Butadiene Rubber. J Chil Chem Soc [Internet]. 2009 [cited 2023 May 29];54(1). http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072009000100006&lng=en&nrm=iso&tlng=en Search in Google Scholar

Chandrasekaran VC. Rubbers, Chemicals and Compounding for ‘O’ Rings and Seals. In: Rubber Seals for Fluid and Hydraulic Systems [Internet]. Elsevier; 2010 [cited 2023 May 29]. p. 57–69. https://linkinghub.elsevier.com/retrieve/pii/B9780815520757100061 Search in Google Scholar

Guo L, Huang G, Zheng J, Li G. Thermal oxidative degradation of styrene-butadiene rubber (SBR) studied by 2D correlation analysis and kinetic analysis. J Therm Anal Calorim. 2014 Jan;115(1):647–57. Search in Google Scholar

Kurian T, Mathew NM. Natural Rubber: Production, Properties and Applications. In: Kalia S, Avérous L, editors. Biopolymers [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2011 [cited 2023 May 29]. p. 403–36. https://onlinelibrary.wiley.com/doi/10.1002/9781118164792.ch14 Search in Google Scholar

Kobayashi S, Müllen K, editors. Encyclopedia of Polymeric Nano-materials [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015 [cited 2023 May 29]. http://link.springer.com/10.1007/978-3-642-29648-2 Search in Google Scholar

P M, Te M. Natural Rubber and Reclaimed Rubber Composites–A Systematic Review. Polym Sci [Internet]. 2016 [cited 2023 May 29];2(1). http://polymerscience.imedpub.com/natural-rubber-and-reclaimed-rubber-compositesa-systematic-review.php?aid=11066 Search in Google Scholar

Chandrasekaran C. Anticorrosive rubber lining: a practical guide for plastics engineers. Oxford: Elsevier; 2017. 266 p. (Plastics design library). Search in Google Scholar

Thomas S, editor. Progress in rubber nanocomposites. Amsterdam: Elsevier; 2017. 574 p. (Woodhead Publishing series in composites science and engineering). Search in Google Scholar

Huang Y, Li Y, Zhao H, Wen H. Research on constitutive models of hydrogenated nitrile butadiene rubber for packer at different temperatures. J Mech Sci Technol. 2020 Jan;34(1):155–64. Search in Google Scholar

Bauccio M, American Society for Metals, editors. ASM metals reference book. 3rd ed. Materials Park, Ohio: ASM International; 1993. Search in Google Scholar

Ismail MN, El-Sabbagh SH, Yehia AA. Fatigue and Mechanical Properties of NR/SBR and NR/NBR Blend Vulcanizates. J Elastomers Plast. 1999 Jul;31(3):255–70. Search in Google Scholar

Ward IM, Sweeney J. Mechanical Properties of Solid Polymers: Third Edition [Internet]. 1st ed. Wiley; 2012 [cited 2023 May 29]. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119967125 Search in Google Scholar

Copley BC. Tackification Studies of Natural Rubber/Styrene-Butadiene Rubber Blends. Rubber Chem Technol. 1982 May 1;55(2):416–27. Search in Google Scholar

Zeng X, Li G, Zhu J, Sain M, Jian R. NBR/CR‐Based High‐Damping Rubber Composites Containing Multiscale Structures for Tailoring Sound Insulation. Macromol Mater Eng. 2023 Feb;308(2):2200464. Search in Google Scholar

Tobajas R, Ibartz E, Gracia L. <span>A comparative study of hyperelastic constitutive models to characterize the behavior of a polymer used in automotive engines</span>. In: Proceedings of 2nd International Electronic Conference on Materials [Internet]. Sciforum.net: MDPI; 2016 [cited 2023 May 29]. p. A002. http://sciforum.net/conference/ecm-2/paper/3398 Search in Google Scholar

Saha S, Bal S. Detailed study of dynamic mechanical analysis for nanocomposites. Emerg Mater Res. 2019 Sep 1;8(3):408–17. Search in Google Scholar

Jose Chirayil C, Abraham J, Kumar Mishra R, George SC, Thomas S. Instrumental Techniques for the Characterization of Nanoparticles. In: Thermal and Rheological Measurement Techniques for Nano-materials Characterization [Internet]. Elsevier; 2017.. https://linkinghub.elsevier.com/retrieve/pii/B9780323461399000013 Search in Google Scholar

Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech JBT. 2010 Dec;21(4):167–93. Search in Google Scholar

Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, Martínez-Guerra E, Piñón-Balderrama CI, Compean Martínez I, et al. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers. 2019 Dec 18;12(1):5. Search in Google Scholar

Gallagher P. K., Brown M. E., Kemp R. B. Handbook of Thermal Analysis and Calorimetry. Amsterdam [Netherlands] ; New York: Elsevier; 1998. Search in Google Scholar

Loos K, Aydogdu AB, Lion A, Johlitz M, Calipel J. Strain-induced crystallisation in natural rubber: a thermodynamically consistent model of the material behaviour using a serial connection of phases. Contin Mech Thermodyn. 2021 Jul;33(4):1107–40. Search in Google Scholar

Wood L. A.,, Bekkedahl N. Crystallization of Unvulcanized Rubber at Different Temperatures. Journal of Applied Physics 17. 1946;362–75. Search in Google Scholar

Doherty WOS, Leè KL, Treloar LRG. Non-Gaussian effects in sty-rene-butadiene rubber: Non-Gaussian effects in styrene-butadiene rubber. Br Polym J. 1980 Mar;12(1):19–23. Search in Google Scholar

Schieppati J, Schrittesser B, Wondracek A, Robin S, Holzner A, Pinter G. Temperature impact on the mechanical and fatigue behavior of a non-crystallizing rubber. Int J Fatigue. 2021 Mar;144:106050. Search in Google Scholar

Mooney M. A Theory of Large Elastic Deformation. J Appl Phys. 1940 Sep;11(9):582–92. Search in Google Scholar

Large elastic deformations of isotropic materials IV. further developments of the general theory. Philos Trans R Soc Lond Ser Math Phys Sci. 1948 Oct 5;241(835):379–97. Search in Google Scholar

Peddini SK, Bosnyak CP, Henderson NM, Ellison CJ, Paul DR. Nanocomposites from styrene–butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: Mechanical properties. Polymer. 2015 Jan;56:443–51. Search in Google Scholar

Tzounis L, Debnath S, Rooj S, Fischer D, Mäder E, Das A, et al. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers. Mater Des. 2014 Jun;58:1–11. Search in Google Scholar

Kondyurin A, Eliseeva A, Svistkov A. Bound (“Glassy”) Rubber as a Free Radical Cross-linked Rubber Layer on a Carbon Black. Materials. 2018 Oct 16;11(10):1992. Search in Google Scholar

Fröhlich J, Niedermeier W, Luginsland HD. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part Appl Sci Manuf. 2005 Apr;36(4):449–60. Search in Google Scholar

Mechanics of Solid Polymers [Internet]. Elsevier; 2015. https://linkinghub.elsevier.com/retrieve/pii/C20130154931 Search in Google Scholar

Darijani H, Naghdabadi R, Kargarnovin MH. Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates. Proc Inst Mech Eng Part C J Mech Eng Sci. 2010 Mar 1;224(3):591–602. Search in Google Scholar

Yeoh OH. Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates. Rubber Chem Technol. 1990 Nov 1;63(5):792–805. Search in Google Scholar

Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids. 1993 Feb;41(2):389–412. Search in Google Scholar

Treloar LRG. The elasticity of a network of long-chain molecules—II. Trans Faraday Soc. 1943;39(0):241–6. Search in Google Scholar

Zhang MG, Cao YP, Li GY, Feng XQ. Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Biomech Model Mechanobiol. 2014 Jan;13(1):1–11. Search in Google Scholar

Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos Trans R Soc Lond Ser Math Phys Sci. 1951 Apr 24;243(865):251–88. Search in Google Scholar

Hallquist, J.O. Ls-Dyna. Material Manual. 2005; Search in Google Scholar

Stander N, Craig K.J, Reichert R. Material identification in structural optimization using response surfaces. Struct Multidiscip Optim. 2005 Feb;29(2):93–102. Search in Google Scholar

Snyman JA. The LFOPC leap-frog algorithm for constrained optimization. Comput Math Appl. 2000 Oct;40(8–9):1085–96. Search in Google Scholar

Mullerschön H, Thiele M. Optimization of an Adaptive Restraint System Using LS-OPT and Visual Exploration of the Design Space Using D-SPEX. 2006; Search in Google Scholar