Publié en ligne: 25 avr. 2023
Pages: 239 - 245
Reçu: 25 sept. 2022
Accepté: 06 déc. 2022
DOI: https://doi.org/10.2478/ama-2023-0027
Mots clés
© 2023 Jamil A. Haider et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
This article focuses on the exact periodic solutions of nonlinear wave equations using the well-known Jacobi elliptic function expansion method. This method is more general than the hyperbolic tangent function expansion method. The periodic solutions are found using this method which contains both solitary wave and shock wave solutions. In this paper, the new results are computed using the closed-form solution including solitary or shock wave solutions which are obtained using Jacobi elliptic function method. The corresponding solitary or shock wave solutions are compared with the actual results. The results are visualised and the periodic behaviour of the solution is described in detail. The shock waves are found to break with time, whereas, solitary waves are found to be improved continuously with time.