Accès libre

Assessment of the Impact of Wear and Tear of Rubber Elements in Tracked Mechanism on the Dynamic Loads of High-Speed Tracked Vehicles

À propos de cet article

Citez

1. Djurić R, Milis Avljević V. Investigation of the relationship between reliability of track mechanism and mineral dust content in rocks of lignite open pits. Maintenance and Reliability. 2016; 18 (1): 142-150.10.17531/ein.2016.1.19 Search in Google Scholar

2. Grygier D. The impact of operation of elastomeric track chains on the selected properties of the steel cord wires. Maintenance and Reliability. 2017; 19 (1): 95-101.10.17531/ein.2017.1.13 Search in Google Scholar

3. Dudziński P, Kosiara A, Konieczny A. Wirtualne prototypowanie nowej generacji układu jezdnego na gąsienicach elastomerowych do zastosowań arktycznych. Postępy Nauki i Techniki. 2012; 14: 64-74. Search in Google Scholar

4. Czabanowski R. Numeryczna analiza obciążeń wybranych elementów podwozia z gąsienicami elastomerowymi. Przegląd Mechaniczny. 2010; nr 7-8: 30-36. Search in Google Scholar

5. Dziubak T. The effects of dust extraction on multi-cyclone and non-woven fabric panel filter performance in the air filters used in special vehicles. Maintenance and Reliability. 2016; 18 (3): 348-357.10.17531/ein.2016.3.5 Search in Google Scholar

6. Gniłka J, Mężyk A. Experimental identification and selection of dynamic properties of a high-speed tracked vehicle suspension system. Maintenance and Reliability. 2017; vol. 19 (1): 108-113.10.17531/ein.2017.1.15 Search in Google Scholar

7. Bogucki R. Badania prototypów nakładek elastomerowych na człony taśm gąsienicowych. Szybkobieżne Pojazdy Gąsienicowe. 2013; 1 (32): 37-46. Search in Google Scholar

8. Rybak P. Tracked or Wheeled Chassis. Journal of Kones Powertrain and Transport. 2007; 14 (3):527-536. Search in Google Scholar

9. Rybak P. Operating loads of impulse nature acting on the special equipment of the combat vehicles. Maintenance and Reliability. 2014; 16 (3): 347-353. Search in Google Scholar

10. Campanelli M, Shabana AA, Choi JH. Chain vibration and dynamic stress in three-dimensional multibody tracked vehicles. Multibody System Dynamics. 1998; 2: 277–316.10.1023/A:1009758701296 Search in Google Scholar

11. Lee K. A numerical method for dynamic analysis of tracked vehicles of high mobility. KSME International Journal. 2000; 14 (10): 1028-1040.10.1007/BF03185057 Search in Google Scholar

12. Ma ZD, Perkins NC. A super-element of track-wheel-terrain interaction for dynamic simulation of tracked vehicles. Multibody System Dynamics. 2006; 15: 351–372. Search in Google Scholar

13. Wallin M, Aboubakr AK, Jayakumar P,·Letherwood MD,·Gorsich DJ,·Hamed A,·Shaban A. A comparative study of joint formulations: application to multibody system tracked vehicles. Nonlinear Dynamics. 2013; 74 (3): 783–800.10.1007/s11071-013-1005-6 Search in Google Scholar

14. Wang P, Rui X, Yu H. Study on dynamic track tension control for high-speed tracked vehicles. Mechanical Systems and Signal Processing. 2019; 132: 277-292. Available from: doi.org/10.1016/j.ymssp.2019.06.03110.1016/j.ymssp.2019.06.031 Search in Google Scholar

15. Wang Z, Lv H, Zhou X, Chen Z, Yang Y. Design and Modeling of a Test Bench for Dual-Motor Electric Drive Tracked Vehicles Based on a Dynamic Load Emulation Method. Sensor. 2018; 18: 1-20.10.3390/s18071993606851429933632 Search in Google Scholar

16. Dudziński P, Chołodowski J. A method for predicting the internal motion resistance of rubber-tracked undercarriages, Pt. 1. A review of the state-of-the-art methods for modeling the internal resistance of tracked vehicles. Journal of Terramechanics. 2021; 96: 81-100. Available from: doi.org/10.1016/j.jterra.2021.02.00610.1016/j.jterra.2021.02.006 Search in Google Scholar

17. Chołodowski J, Dudziński P, Ketting M. A method for predicting the internal motion resistance of rubber-tracked undercarriages, Pt. 3. A research on bending resistance of rubber tracks. Journal of Terramechanics. 2021; 97: 71-103. Available from: https://doi.org/10.1016/j.jterra.2021.02.00510.1016/j.jterra.2021.02.005 Search in Google Scholar

18. Liu W, Cheng K, Wang J. Failure analysis of the rubber track of a tracked transporter. Advances in Mechanical Engineering. 2018; 10 (7): 1–8.10.1177/1687814018789526 Search in Google Scholar

19. Gat G, Franco Y, Shmulevich I. Fast dynamic modeling for off-road track vehicles. Journal of Terramechanics. 2020; 92: 1-12. Available from: doi: 10.1016/j.jterra.2020.09.001.10.1016/j.jterra.2020.09.001 Search in Google Scholar

20. Burdziński Z. Teoria ruchu pojazdu gąsienicowego. Warszawa: WKŁ; 1972. Search in Google Scholar

21. Mahalingam I, Padmanabhan C. A novel alternate multibody model for the longitudinal and ride dynamics of a tracked vehicle. Vehicle System Dynamics. 2021; 59(3): 433-457.10.1080/00423114.2019.1693048 Search in Google Scholar

22. Edwin P, Shankar K, Kannan K. Soft soil track interaction modeling in single rigid body tracked vehicle models. J Terramechanics. 2018; 77:1-14.10.1016/j.jterra.2018.01.001 Search in Google Scholar

23. Sandu C, Freeman JS. Military tracked vehicle model. Part I: Multi-body dynamics formulation.Int J Veh Syst Model Test. 2005; 1(1-3):48–67.10.1504/IJVSMT.2005.008572 Search in Google Scholar

24. Janarthanan B, Padmanabhan C, Sujatha C. Longitudinal dynamics of a tracked vehicle:simulation and experiment. J Terramechanics. 2012;49(2):63-72.10.1016/j.jterra.2011.11.001 Search in Google Scholar

25. Nabagło T, Jurkiewicz A, Kowal J. Modeling verification of an advanced torsional spring for tracked vehicle suspension in 2S1 vehicle model. Engineering Structures. 2021; 229: 111623.10.1016/j.engstruct.2020.111623 Search in Google Scholar

26. Ata WG, Oyadiji SO. An investigation into the effect of suspension configurations on the performance of tracked vehicles traversing bump terrains. Vehicle System Dynamics. 2014; 52(7): 1-25. Search in Google Scholar

27. Sandu C, Freeman JS. Military tracked vehicle model. Part II: Case study. Int J Veh Syst Model Test. 2005;1(1-3):216-231.10.1504/IJVSMT.2005.008580 Search in Google Scholar

28. Budynas R, Nisbett K. Shigley’s Mechanical Engineering Design. McGraw Hill Education; 2019. Search in Google Scholar

29. Borkowski W, Rybak P, Hryciów Z. Modele częściowe w analizie obciążeń struktur nośnych wozów bojowych. Biuletyn Wojskowej Akademii Technicznej. 2006; 55(4):221-232. Search in Google Scholar

30. Hryciów Z; Małachowski J; Rybak P, Wiśniewski A. Research of Vibrations of an armoured Personnel Carrier Hull with FE Implementation. Materials. 2021; 14,6807:1-18. Available from: doi.org/10.3390/ma14226807. Search in Google Scholar

31. Hebda M, Łopata A. Grafen – materiał przyszłości. Czasopismo Techniczne. Mechanika. 2012; R. 109, Z. 22, 8-M: 45-53. Search in Google Scholar