Accès libre

Investigation of Driving Stability of a Vehicle–Trailer Combination Depending on the Load’s Position Within the Trailer

À propos de cet article

Citez

1. Gerlici J, Sakhno V, Yefymenko A, Verbitskii V, Kravchenko A, Kravchenko K. The stability analysis of two-wheeled vehicle model. MATEC Web of Conference. 2018; 157: 1-10. https://doi.org/10.1051/matecconf/20181570100710.1051/matecconf/201815701007 Search in Google Scholar

2. Aldughaiyem A, Salamah YB, Ahmad I. Control Design and Assessment for a revesing tractor – trailer system using a cascade controller. Applied Sciences [Internet]. 2021 Nov 11; 11(22): 10634. Available form: https://doi.org/10.3390/app11221063410.3390/app112210634 Search in Google Scholar

3. Mikhailov AV, Zhigulskaya AI, Kasakov YA. Modeling of peat tractor semi-trailer motion. International Conference Aviation Engineering and Transportatin (AviaEnT 2020), September 21-26, 2020, Irkutsk, Russia. https://doi.org/10.1088/1757-899X/1061/1/01202610.1088/1757-899X/1061/1/012026 Search in Google Scholar

4. Milani S, Unlusoy YS, Marzbani H, Jazar RN. Semitrailer Steering control for improved articulated vehicle manoeuvrability and stability. Nonlinear Engineering. 2019; 8(1): 568-581. https://doi.org/10.1515/nleng-2018-012410.1515/nleng-2018-0124 Search in Google Scholar

5. Emheisen MA, Emirler MT, Ozkan B. Lateral stability control of articulated heavy vehicles based on active steering system. International Journal of Mechanical Engineering and Robotics Research. 2022; 11(8): 575-582. https://doi.org/10.18178/ijmerr.11.8.575-58210.18178/ijmerr.11.8.575-582 Search in Google Scholar

6. Chen Y, Peterson AW, Zhang C, Ahmdian M. A simulation-based comparative study on lateral characteristics of trucks with double and triple trailers. International Journal of Vehicle Safety. 2019; 11(2): 136-157. https://doi.org/10.1504/IJVS.2019.10185710.1504/IJVS.2019.101857 Search in Google Scholar

7. Mataras DA, Luque P, Alonso M. Phase plane analysis applied to non-explicit multibody vehicle models. Multibody System Dynamics. 2022; 56(2): 173-188. https://doi.org/10.1007/s11044-022-09846-910.1007/s11044-022-09846-9 Search in Google Scholar

8. Hussain K, Stein W, Day AJ. Modelling commercial vehicle handling and rolling stability. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2005; 219(4): 357-369. https://doi.org/10.1243/146441905X4870710.1243/146441905X48707 Search in Google Scholar

9. Marienka P, Francak M, Jagelcak J, Synak F. Comparison of braking characteristics of solo vehicle and selected types of vehicle combinations. Horizons of Autonomous Mobility in Europe (LOGI 2019), November 14-15, 2019, České Budějovice, Czech Republic. https://doi.org/10.1016/j.trpro.2020.02.00710.1016/j.trpro.2020.02.007 Search in Google Scholar

10. Damjanovic M, Zeljko S, Stanimirovic D, Tanackov I, Marinkovic D. Impact of the number of vehicles on traffic safety: Multiphase modeling. Facta Universitatis Series: Mechanical Engineering. 2022; 20(1): 177-197. https://doi.org/10.22190/FUME220215012D10.22190/FUME220215012D Search in Google Scholar

11. Skrucany T, Vrabel J, Kazimir P. The influence of the cargo weight and its position on the braking characteristics of light commercial vehicles. Open Engineering, 2020; 10(1): 154-165. https://doi.org/10.1515/eng-2020-002410.1515/eng-2020-0024 Search in Google Scholar

12. Vrabel J, Skrucany T, Bartuska L, Koprna J. Movement analysis of the semitrailer with the tank-container at hard braking – the case study. 4th International Conference of Computational Methods in Engineering Science (CMES 2019), November 21-23, 2019, Kazimierz Dolny, Poland. https://doi.org/10.1088/1757-899X/710/1/01202510.1088/1757-899X/710/1/012025 Search in Google Scholar

13. Mattas K, Albano G, Riccardo D, Galassi MCh, Suarez-Bertoa R, Sandor V, Ciuffo B. Driver models for the definition of safety requirements of automated vehicles in international regulations. Application to motorway driving conditions. Accident Analysis and Prevention. 2022; 174: 1-16. https://doi.org/10.1016/j.aap.2022.10674310.1016/j.aap.2022.106743937897335700684 Search in Google Scholar

14. Gechev T, Mruzek M, Barta D. Comparison of real driving cycles and consumed braking power in suburban Slovakian driving. 9th International Scientific Conference on Aeronautics, Automotive and Railway Engineering and Technologies (Bultrans 2017), September 11-13, 2017, Sozopol, Bulgaria. https://doi.org/10.1051/matecconf/20171330200310.1051/matecconf/201713302003 Search in Google Scholar

15. Yevtushenko, A., Kuciej, M., Topczewska, K.: Analytical model for investigation of the effect of friction power on temperature in the disk brake. Advances in Mechanical Engineering. 2017; 9(12): 1-12. https://doi.org/10.1177/168781401774409510.1177/1687814017744095 Search in Google Scholar

16. Yevtushenko A, Kuciej M, Topczewska K. Analytical model to investigate distributions of the thermal stresses in the pad and disk for different temporal profiles of friction power. Advances in Mechanical Engineering. 2018; 10(10): 1-10. https://doi.org/10.1177/168781401880667010.1177/1687814018806670 Search in Google Scholar

17. Koch S, Koppen E, Grabner N, von Wagner U. On the influence of multiple equilibrium positions on brake noise. Facta Universitatis Series: Mechanical Engineering. 2021; 19(4): 613-632. https://doi.org/10.22190/FUME210106020K10.22190/FUME210106020K Search in Google Scholar

18. Bai Z, Lu Y, Li Y. Method of improving lateral stability by using additional yaw moment of semi-trailer. Energies [Internet]. 2020 Nov 30; 13(23):6317. Available from: https://doi.org/10.3390/en1323631710.3390/en13236317 Search in Google Scholar

19. Lack T, Gerlici J. Analysis of vehicles dynamic properties from the point of view of passenger comfort. Communication – Scientific Letters of the University of Zilina. 2008; 10(3): 10-18. https://doi.org/10.26552/com.C.2008.3.10-1810.26552/com.C.2008.3.10-18 Search in Google Scholar

20. Rigatos G, Siano P, Wira P, Busawon K, Binns R. A nonlinear H-infinity control approach for autonomous truck and trailer systems. Unmanned Systems. 2020; 8(1): 49-69. https://doi.org/10.1142/S230138502050004110.1142/S2301385020500041 Search in Google Scholar

21. Road traffic act No. 8/2009. Search in Google Scholar

22. Wang D, Chen S, Zhang W, Du D. The roll stability analysis of semi-trailer based on the wheel force. Computers, Materials and Continua. 2022; 71(1): 1837-1848. https://doi.org10.32604/cmc.2022.02303310.32604/cmc.2022.023033 Search in Google Scholar

23. Chajkin AP, Dobretsov RY, Sokolova VA, Teterina IA, Kamenchukov AV, Tiknonov EA, Bazykin VI. Mathematical model for assessing lateral stability of articulated tracked vehicles. 3rd International Scientific Conference on Applied Pysics, Information Technologies and Engineering (APITECH-III 2021), September 24 – October 3, 2021, Krasnoyarsk, Russia. https://doi.org/10.1088/1742-6596/2094/4/04200510.1088/1742-6596/2094/4/042005 Search in Google Scholar

24. Voros I, Takacs D. The effects of trailer towing on the dynamics of a lane-keeping controller. ASME 2020 Dynamic Systems and Control Conference. Virtual, Online, 2020. https://doi.org/10.1115/DSCC2020-314110.1115/DSCC2020-3141 Search in Google Scholar

25. Vasko M, Leitner B, Saga M. Computational fatigue damage prediction of the lorry frames under stochastic random excitation. Communication – Scientific Letters of the University of Žilina. 2010; 12(4): 62-67.10.26552/com.C.2010.4.62-67 Search in Google Scholar

26. Lot R, Massaro M. A symbolic approach to the multibody modeling of road vehicles. International Journal of Applied Mechanics [Internet]. 2017 Jul 1; 9(5):1750068. Available from: https://doi.org/10.1142/S175882511750068510.1142/S1758825117500685 Search in Google Scholar

27. Xing J. Determination of instability critical speed of articulated vehicle on ramp section based on response surface method. International Conference on Mechanical Engineering, Intelligent Manufacturing and Automation Technology (MEMAT 2021), April 23-25, 2021, Guilin, China. https://doi.org10.1088/1742-6596/1939/1/012075 Search in Google Scholar

28. Zhang Q, Su Ch, Zhou Y, Zhang Ch, Ding J, Wang Y. Numerical investigation on handling stability of a heavy tractor semi-trailer under crosswind. Applied Sciences [Internet]. 2020 May 26; 10(11):3672. Available from: https://doi.org/10.3390/app1011367210.3390/app10113672 Search in Google Scholar

29. Jagelcak J, Gnap J, Kuba O, Frnda J, Kostrzewski M. Determination of turning radius and lateral acceleration of vehicle by GNSS/INS sensor. Sensors [Internet]. 2022 Mar 16; 22(6):2298. Available from: https://www.mdpi.com/1424-8220/22/6/229810.3390/s22062298895085935336468 Search in Google Scholar

30. Guo R, Siquan L, Zulin H, Xu L. Study on Vehicle-road interaction for autonomous driving. Sustainability [Internet]. 2022 Sep 14; 14(18):11693. Available from: https://www.mdpi.com/2071-1050/14/18/1169310.3390/su141811693 Search in Google Scholar

31. Yang Z, Wang L, Liu F, Li Z. Nonlinear dynamic analysis of constant-speed and variable-speed of autonomous vehicle passing uneven road. Journal of Vibroengineering. 2022; 24(4): 726-744. https://doi.org/10.21595/jve.2022.2225010.21595/jve.2022.22250 Search in Google Scholar

32. Lack T, Gerlici J. Analysis of vehicles dynamic properties from: The point of view of passenger comfort. Communications – Scientific Letters of the University of Žilina. 2008; 10(3): 10-18.10.26552/com.C.2008.3.10-18 Search in Google Scholar

33. Gerlici J, Lack T, Ondrova Z. Evaluation of comfort for passengers of railway vehicles. Communications – Scientific Letters of the University of Žilina. 2007; 9(4): 44-49.10.26552/com.C.2007.4.44-49 Search in Google Scholar

34. De Bernardis, M., Rini, G., Bottiglione, F., Hartavi, A.E., Sorniotti, A.: On nonlinear model predictive direct yaw moment control for trailer sway mitigation. Vehicle System Dynamics. 2022; in press: 1-27. https://doi.org/10.1080/00423114.2022.205435210.1080/00423114.2022.2054352 Search in Google Scholar

35. Zhou S, Zhang S. Study on tractor semi-trailer roll stability control. The Open Mechanical Engineering Journal. 2014; 8(A238): 238-242. https://doi.org/10.2174/1874155x0140801023810.2174/1874155X01408010238 Search in Google Scholar

36. Koszałka G, Zniszczynski A. A simulation study on the manoeuverability of a large size semitrailer. Transport. 2016; 31(4): 408-415. https://doi.org/10.3846/16484142.2015.105722410.3846/16484142.2015.1057224 Search in Google Scholar

37. Pacejka H. Modeling of the as a vehicle component with applications. CCG-Course V2.01, Carl-Cranz-Gesellschaft. 1982. Search in Google Scholar

38. Rill G. Sophisticated but quite simple contact calculation for handling tire models. Multibody System Dynamics. 2019; 45(2): 131-153. https://doi.org/10.1007/s11044-018-9629-410.1007/s11044-018-9629-4 Search in Google Scholar

39. Nunic ZB, Ajanovic M, Miletic D, Lojic R. Determination of the rolling resistance coefficient under different traffic conditions. Facta Universitatis Series: Mechanical Engineering. 2020; 18(4): 653-664. https://doi.org/10.22190/FUME181116015N10.22190/FUME181116015N Search in Google Scholar

40. Istenik R, Barta D, Mucha W. Influence of the wheels on the automobile dynamics. Komunikacie. 2004; 6(1): 26-28.10.26552/com.C.2004.1.26-28 Search in Google Scholar

41. Car trailer fail – car accident in Poland. 2022; Online, [cited 2022-11-04]: Available on: https://www.youtube.com/watch?v=mfLnLwFcSBc Search in Google Scholar

42. Tongue weight safety demonstration. 2022; Online, [cited 2022-11-04]: Available on: https://www.youtube.com/watch?v=w9Dgxe584Ss Search in Google Scholar