Accès libre

Comparison of Vehicle Suspension Dynamic Responses for Simplified and Advanced Adjustable Damper Models with Friction, Hysteresis and Actuation Delay for Different Comfort-Oriented Control Strategies

À propos de cet article

Citez

1. Els PS, Theron NJ, Uys PE, Thoresson MJ. The ride comfort vs. handling compromise for off-road vehicles. J. Terramechanics, 2007;44(4):303–317.10.1016/j.jterra.2007.05.001 Search in Google Scholar

2. Sturari C, Adjustable shock absorber, US2780321A, 1957. Search in Google Scholar

3. Yue C. Control law designs for active suspensions in automotive vehicles, 1988. Search in Google Scholar

4. Crosby MJ, Karnopp DC. The Active Damper—A New Concept for Shock and Vibration Control. Shock Vib. Bull. 1973;43:119–133 Search in Google Scholar

5. Emura J, Kakizaki S, Yamaoka F, Nakamura M. Development of the Semi-Active Suspension System Based on the Sky-Hook Damper Theory. J. Passeng. CARS. 1994;103:1110–1119. Search in Google Scholar

6. Hong KS, Sohn HC, Hedrick JK. Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling. and Hardware-in-the-Loop Tuning. J. Dyn. Syst. Meas. Control, 2002;124(1): 158–167. Search in Google Scholar

7. Savaresi SM, Spelta C. Mixed Sky-Hook and ADD: Approaching the Filtering Limits of a Semi-Active Suspension. J. Dyn. Syst. Meas. Control. 2007;129(4):382–392 Search in Google Scholar

8. Ślaski G. Studium projektowania zawieszeń samochodowych o zmiennym tłumieniu. Poznań: Wydawnictwo Politechniki Poznańskiej, 2012. Search in Google Scholar

9. Valášek M, Novák M, Šika Z, Vaculín O. Extended ground-hook – New concept of semi-active control of truck’s suspension. Veh. Syst. Dyn. 1997;27(5-6):289–303.10.1080/00423119708969333 Search in Google Scholar

10. Savaresi SM, Silani E, Bittanti S. Acceleration-Driven-Damper (ADD): An Optimal Control Algorithm For Comfort-Oriented Semiactive Suspensions. J. Dyn. Syst. Meas. Control. 2005;127(2):218–229 Search in Google Scholar

11. Savaresi SM, Poussot-Vassal C, Spelta C, Sename O, Dugard L. Semi-Active Suspension Control Design for Vehicles. 2010.10.1016/B978-0-08-096678-6.00002-X Search in Google Scholar

12. Morselli R, Zanasi R. Control of port Hamiltonian systems by dissipative devices and its application to improve the semi-active suspension behavior’. Mechatronics. 2008;18(7):364–369.10.1016/j.mechatronics.2008.05.008 Search in Google Scholar

13. Gao H, Li Z, Sun W. Energy-Driven-Damper (EDD): Comfort-Oriented Semiactive Suspensions Optimized From an Energy Perspective. IEEE Trans. Control Syst. Technol. 2020;28(5): 2069–2076. Search in Google Scholar

14. Dąbrowski K. Algorytmizacja adaptacyjnego sterowania tłumieniem zawieszenia samochodu dla uwzględnienia zmienności warunków eksploatacji. 2018. Search in Google Scholar

15. Koo JH, Goncalves FD, Ahmadian M. A comprehensive analysis of the response time of MR dampers. Smart Mater. Struct., 2006;15(2).10.1088/0964-1726/15/2/015 Search in Google Scholar

16. Krauze P, Kasprzyk J. Driving safety improved with control of magnetorheological dampers in vehicle suspension. Appl. Sci. 2020;10(24):1–29 Search in Google Scholar

17. Kwok NM, Ha QP, Nguyen TH, Li J, Samali B. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sensor and Actuators, 2006;A 132:441-451.10.1016/j.sna.2006.03.015 Search in Google Scholar

18. Klockiewicz Z, Ślaski G, Dąbrowski K. Simulation investigation of individual bumps recognition possibilities for damping control and possible suspension performance improvements. 2020 12th Int. Sci. Conf. Automot. SAFETY, Automot. Saf. 2020. Search in Google Scholar

19. Galanti F. Modelling, Simulation, and Control for a Skyhook suspension. 2013. Search in Google Scholar