1. bookVolume 16 (2022): Edition 4 (December 2022)
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Introduction to Modelling the Correlation Between Grain Sizes of Feed Material and the Structure and Efficiency of the Process of Co-Rotating Twin-Screw Extrusion of Non-Flammable Composites with a Pla Matrix

Publié en ligne: 14 Oct 2022
Volume & Edition: Volume 16 (2022) - Edition 4 (December 2022)
Pages: 301 - 308
Reçu: 28 Jun 2022
Accepté: 31 Jul 2022
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais

1. Fiedurek K, Szroeder P, Macko M, Raszkowska-Kaczor A, Puszczykowska N. Influence of the parameters of the extrusion process on the properties of PLA composites with the addition of graphite. IOP Conf Ser: Mater Sci Eng. 2021;1199(1):012057.10.1088/1757-899X/1199/1/012057 Search in Google Scholar

2. Stasiek J, Bajer K, Stasiek A, Bogucki M. Co-rotation twin-screw extruders for polymer materials. A method for experimental studying the extrusion process. Przemysl Chemiczny. 2012;91:224–30. Search in Google Scholar

3. Martin C. Twin Screw Extruders as Continuous Mixers for Thermal Processing: a Technical and Historical Perspective. AAPS PharmSci Tech. 2016;17(1):3–19.10.1208/s12249-016-0485-3476612226883259 Search in Google Scholar

4. Lewandowski A, Wilczyński K. Modeling of Twin Screw Extrusion of Polymeric Materials. Polymers. 2022;14(2):274.10.3390/polym14020274877997435054679 Search in Google Scholar

5. Flitta I, Sheppard T. Effect of pressure and temperature variations on FEM prediction of deformation during extrusion. Materials Science and Technology. 2005;21(3):339–46.10.1179/174328405X29221 Search in Google Scholar

6. Mechanisms of mixing in single and co-rotating twin screw extruders - Lawal - 1995 - Polymer Engineering & Science - Wiley Online Library [Internet]. [cited 2022 Jun 12]. Available from: https://onlinelibrary.wiley.com/doi/10.1002/pen.760351702 Search in Google Scholar

7. Carneiro O, Covas J, Vergnes B. Experimental and Theoretical Study of Twin-Screw Extrusion of Polypropylene. Journal of Applied Polymer Science. 2000;4:78.10.1002/1097-4628(20001114)78:7<1419::AID-APP130>3.0.CO;2-B Search in Google Scholar

8. Dittrich C, Pecenka R, Løes AK, Cáceres R, Conroy J, Rayns F, et al. Extrusion of Different Plants into Fibre for Peat Replacement in Growing Media: Adjustment of Parameters to Achieve Satisfactory Physical Fibre-Properties. Agronomy. 2021;11.10.3390/agronomy11061185 Search in Google Scholar

9. Eitzlmayr A, Khinast J, Hörl G, Koscher G, Reynolds G, Huang Z, et al. Experimental characterization and modeling of twin-screw extruder elements for pharmaceutical hot melt extrusion. AIChE Journal. 2013;59(11):4440–50.10.1002/aic.14184 Search in Google Scholar

10. Kuo CFJ, Huang CC, Lin YJ, Dong MY. A study of optimum processing parameters and abnormal parameter identification of the twin-screw co-rotating extruder mixing process based on the distribution and dispersion properties for SiO2/low-density polyethylene nano-composites. Textile Research Journal. 2020;90(9–10): 1102–17.10.1177/0040517519886055 Search in Google Scholar

11. Kalyon DM, Malik M. An Integrated Approach for Numerical Analysis of Coupled Flow and Heat Transfer in Co-rotating Twin Screw Extruders. International Polymer Processing. 2007 Jul 1;22(3):293–302.10.3139/217.1020 Search in Google Scholar

12. Andersen P. Fundamentals of twin-screw extrusion polymer melting: Common pitfalls and how to avoid them. In Cleveland, Ohio, USA; 2015 [cited 2022 Jun 12]. 020007.10.1063/1.4918387 Search in Google Scholar

13. Li M. Effects of API particle size on the dissolution rate in molten polymer excipient matrices during hot melt extrusion, conducted in a co-rotating twin-screw extruder. Theses [Internet]. 2013; Available from: https://digitalcommons.njit.edu/theses/172 Search in Google Scholar

14. Stasiek A, Raszkowska-Kaczor A, Formela K. Badania wpływu nieorganicznych napełniaczy proszkowych na właściwości polipropylenu. Przemysł Chemiczny. 2014;888–92. Search in Google Scholar

15. Zhang B, Zhang Y, Dreisoerner J, Wei Y. The effects of screw configuration on the screw fill degree and special mechanical energy in twin-screw extruder for high-moisture texturised defatted soybean meal. Journal of Food Engineering. 2015;157:77–83.10.1016/j.jfoodeng.2015.02.019 Search in Google Scholar

16. Akdogan H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International. 1996;29(5):423–9.10.1016/S0963-9969(96)00036-1 Search in Google Scholar

17. Andrzej Stasiek. Badania procesu współbieżnego dwuślimakowego wytłaczania modyfikowanego polipropylenu przy zmiennej geometrii ślimaków [PhD Thesis]. [Bydgoszcz]: Uniwersytet Technologiczno-Przyrodniczy; 2015. Search in Google Scholar

18. Zbigniew Polański. Współczesne metody badań doświadczalnych, Warszawa: Wiedza Powszechna; 1978:215 Search in Google Scholar

19. Kazimierz Mańczak. Technika planowania eksperymentu Warszawa: WNT; 1976:277 Search in Google Scholar

20. Mieczysław Korzyński. Metodyka eksperymentu.Planowanie, realizacja i statystyczne opracowanie wyników eksperymentów technologicznych [Internet]. 2006th ed. Warszawa: WNT; 2006;278 Search in Google Scholar

21. Murariu M, Dubois P. PLA composites: From production to properties. Advanced Drug Delivery Reviews. 2016;107:17–46.10.1016/j.addr.2016.04.003 Search in Google Scholar

22. Puszczykowska N, Rytlewski P, Macko M, Fiedurek K, Janczak K. Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers. Environments. 2022;9(5):56.10.3390/environments9050056 Search in Google Scholar

23. Kosmalska D, Janczak K, Raszkowska-Kaczor A, Stasiek A, Ligor T. Polylactide as a Substitute for Conventional Polymers—Biopolymer Processing under Varying Extrusion Conditions. Environments. 2022;9(5):57.10.3390/environments9050057 Search in Google Scholar

24. Kaczor D, Fiedurek K, Bajer K, Raszkowska-Kaczor A, Domek G, Macko M, et al. Impact of the Graphite Fillers on the Thermal Processing of Graphite/Poly(lactic acid) Composites. Materials. 2021;14(18):5346.10.3390/ma14185346846744634576570 Search in Google Scholar

25. Pang Q, Kang F, Deng J, Lei L, Lu J, Shao S. Flame retardancy effects between expandable graphite and halloysite nanotubes in silicone rubber foam. RSC Adv. 2021;11(23):13821–31.10.1039/D1RA01409A869751835423935 Search in Google Scholar

26. Modesti M, Lorenzetti A, Simioni F, Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polymer Degradation and Stability. 2002;77(2):195–202.10.1016/S0141-3910(02)00034-4 Search in Google Scholar

27. Tomiak F, Rathberger K, Schöffel A, Drummer D. Expandable Graphite for Flame Retardant PA6 Applications. Polymers. 2021;13(16):2733.10.3390/polym13162733840073734451272 Search in Google Scholar

28. Grover T, Khandual A, Chatterjee kalesh nath, Jamdagni R. Flame retardants: An overview. 2014;61:29–36. Search in Google Scholar

29. Yan L, Xu Z, Wang X, Deng N, Chu Z. Synergistic effects of aluminum hydroxide on improving the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. J Coat Technol Res. 2018;15(6):1357–69.10.1007/s11998-018-0069-0 Search in Google Scholar

30. Wikoff DS, Birnbaum L. Human Health Effects of Brominated Flame Retardants. In: Eljarrat E, Barceló D, editors. Brominated Flame Retardants [Internet]. Berlin, Heidelberg: Springer; 2011;19–53. (The Handbook of Environmental Chemistry).10.1007/698_2010_97 Search in Google Scholar

31. Morel C, Schroeder H, Emond C, Turner JD, Lichtfouse E, Grova N. Brominated flame retardants, a cornelian dilemma. Environ Chem Lett [Internet]. 2022 Jan 23 [cited 2022 Jul 29]; Available from: https://doi.org/10.1007/s10311-022-01392-2878378135095379 Search in Google Scholar

32. Ding D, Liu Y, Lu Y, Chen Y, Liao Y, Zhang G, et al. A Formalde-hyde-free P-N Synergistic Flame Retardant Containing Phosphonate and Ammonium Phosphate for Cotton Fabrics. Journal of Natural Fibers. 2022;0(0):1–11. Search in Google Scholar

33. Li S, Zhong L, Huang S, Wang D, Zhang F, Zhang G. A novel flame retardant with reactive ammonium phosphate groups and polymerizing ability for preparing durable flame retardant and stiff cotton fabric. Polymer Degradation and Stability. 2019;164:145–56.10.1016/j.polymdegradstab.2019.04.009 Search in Google Scholar

34. Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M. Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. 2014;10.1016/j.matdes.2013.07.095 Search in Google Scholar

35. Chow W, Teoh E, Karger-Kocsis J. Flame retarded poly(lactic acid): A review. Express Polymer Letters. 2018;12:396–417.10.3144/expresspolymlett.2018.34 Search in Google Scholar

36. Noor Zuhaira AA, Rahmah M. Effects of Calcium Carbonate on Melt Flow and Mechanical Properties of Rice Husk/HDPE and Kenaf/HDPE Hybrid Composites. Advanced Materials Research. 2013; 795:286–9.10.4028/www.scientific.net/AMR.795.286 Search in Google Scholar

37. Gallagher LW, McDonald AG. The effect of micron sized wood fibers in wood plastic composites. Maderas Ciencia y tecnología. 2013; 15(3):357–74. Search in Google Scholar

38. Ahmed J, Mulla MZ, Vahora A, Bher A, Auras R. Polylac-tide/graphene nanoplatelets composite films: Impact of high-pressure on topography, barrier, thermal, and mechanical properties. Polymer Composites. 2021;42(6):2898–909.10.1002/pc.26023 Search in Google Scholar

39. Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R. Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal. 2013;49(11):3630–41.10.1016/j.eurpolymj.2013.07.033 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo