1. bookVolume 16 (2022): Edition 3 (September 2022)
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

An Overview of Heat Transfer Enhancement Based Upon Nanoparticles Influenced By Induced Magnetic Field with Slip Condition Via Finite Element Strategy

Publié en ligne: 15 Jun 2022
Volume & Edition: Volume 16 (2022) - Edition 3 (September 2022)
Pages: 200 - 206
Reçu: 02 Feb 2022
Accepté: 10 Apr 2022
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais
Abstract

The mathematical model of heat generation and dissipation during thermal energy transmission employing nanoparticles in a Newtonian medium is investigated. Dimensionless boundary layer equations with correlations for titanium dioxide, copper oxide, and aluminium oxide are solved by the finite element method. Parameters are varied to analyze their impact on the flow fields. Various numerical experiments are performed consecutively to explore the phenomenon of thermal performance of the combination fluid. A remarkable enhancement in thermal performance is noticed when solid structures are dispersed in the working fluid. The Biot number determines the convective nature of the boundary. When the Biot number is increased, the fluid temperature decreases significantly. Among copper oxide, aluminium oxide, and titanium oxide nanoparticles, copper oxide nanoparticles are found to be the most effective thermal enhancers.

Keywords

1. Khan WA, Aziz A. Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: Prescribed surface heat, solute and nanoparticle fluxes. International Journal of Thermal Sciences. 2011;50(11):2154-60.10.1016/j.ijthermalsci.2011.05.022 Search in Google Scholar

2. Hayat T, Khan MI, Waqas M, Alsaedi A, Farooq M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Computer methods in applied mechanics and engineering. 2017;315:1011-24.10.1016/j.cma.2016.11.033 Search in Google Scholar

3. Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. Journal of Thermal Analysis and Calorimetry. 2019;135(2):947-61.10.1007/s10973-018-7335-3 Search in Google Scholar

4. Sheikholeslami M, Zeeshan A. Numerical simulation of Fe3O4-water nanofluid flow in a non-Darcy porous media. International Journal of Numerical Methods for Heat & Fluid Flow. 2018;28(3):641-60.10.1108/HFF-04-2017-0160 Search in Google Scholar

5. Hanif H, Khan I, Shafie S. MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium. Physica Scripta. 2019;94(12):125208.10.1088/1402-4896/ab36e1 Search in Google Scholar

6. Vo DD, Hedayat M, Ambreen T, Shehzad SA, Sheikholeslami M, Shafee A, Nguyen TK. Effectiveness of various shapes of Al 2 O 3 nanoparticles on the MHD convective heat transportation in porous medium. Journal of Thermal Analysis and Calorimetry. 2019;1-9.10.1007/s10973-019-08501-4 Search in Google Scholar

7. Ismail AI. Finite element simulation of magnetohydrodynamic convective nanofluid slip flow in porous media with nonlinear radiation. Alexandria Eng. J. 2016; 55:1305–1319.10.1016/j.aej.2016.04.021 Search in Google Scholar

8. Saleem S, Shafee A, Nawaz M, Dara RN, Tlili I, Bonyah E. Heat transfer in a permeable cavity filled with a ferrofluid under electric force and radiation effects. AIP Advances. 2019;9(9):095107.10.1063/1.5120439 Search in Google Scholar

9. Alharbi SO, Nawaz M, Nazir U. Thermal analysis for hybrid nanofluid past a cylinder exposed to magnetic field. AIP Advances. 2019;9(11):115022.10.1063/1.5127327 Search in Google Scholar

10. Ghadikolaei SS, Hosseinzadeh K, Ganji DD, Hatami M. Fe3O4– (CH2OH) 2 nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid. Journal of Molecular Liquids. 2018;258:172-85.10.1016/j.molliq.2018.02.106 Search in Google Scholar

11. Nawaz M, Rana S, Qureshi IH. Computational fluid dynamic simulations for dispersion of nanoparticles in a magnetohydrodynamic liquid: a Galerkin finite element method. RSC advances. 2018;8(67):38324-35.10.1039/C8RA03825B Search in Google Scholar

12. Nawaz M, Rana S, Qureshi IH, Hayat T. Three-dimensional heat transfer in the mixture of nanoparticles and micropolar MHD plasma with Hall and ion slip effects. AIP Advances. 2018;8(10):105109.10.1063/1.5050670 Search in Google Scholar

13. Hatami M, Hosseinzadeh K, Domairry G, Behnamfar MT. Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates. Journal of the Taiwan Institute of Chemical Engineers. 2014;45(5):2238-45.10.1016/j.jtice.2014.05.018 Search in Google Scholar

14. Ali B, Nie Y, Khan SA, Sadiq MT, Tariq M. Finite element simulation of multiple slip effects on MHD unsteady Maxwell nanofluid flow over a permeable stretching sheet with radiation and thermo-diffusion in the presence of chemical reaction. Processes. 2019;7:1–18.10.3390/pr7090628 Search in Google Scholar

15. Balla CS, Naikoti K. Finite element analysis of magnetohydrodynamic transient free convection flow of nanofluid over a vertical cone with thermal radiation. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2016;230:161–173. Search in Google Scholar

16. Li Z, Sheikholeslami M, Mittal AS, Shafee A, Haq RU. Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method. The European Physical Journal Plus. 2019;134(1):30.10.1140/epjp/i2019-12406-8 Search in Google Scholar

17. Sheikholeslami M, Saleem S, Shafee A, Li Z, Hayat T, Alsaedi A, Khan MI. Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces. Computer Methods in Applied Mechanics and Engineering. 2019;349:839-58.10.1016/j.cma.2019.02.025 Search in Google Scholar

18. Saleem S, Firdous H, Nadeem S, Khan AU. Convective heat and mass transfer in magneto Walter’s B nanofluid flow induced by a rotating cone. Arabian Journal for Science and Engineering. 2019;44(2):1515-23.10.1007/s13369-018-3598-z Search in Google Scholar

19. Sadiq MA, Khan AU, Saleem S, Nadeem S. Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid. RSC advances. 2019;9(9):4751-64.10.1039/C8RA09698H Search in Google Scholar

20. Ramzan M, Sheikholeslami M, Saeed M, Chung JD. On the convective heat and zero nanoparticle mass flux conditions in the flow of 3D MHD Couple Stress nanofluid over an exponentially stretched surface. Scientific reports. 2019;9(1):562.10.1038/s41598-018-37267-2 Search in Google Scholar

21. Dogonchi AS, Armaghani T, Chamkha AJ, Ganji DD. Natural Convection Analysis in a Cavity with an Inclined Elliptical Heater Subject to Shape Factor of Nanoparticles and Magnetic Field. Arabian Journal for Science and Engineering. 2019:1-3.10.1007/s13369-019-03956-x Search in Google Scholar

22. Saleem S, Nadeem S, Rashidi MM, Raju CS. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsystem Technologies. 2019;25(2):683-9.10.1007/s00542-018-3996-x Search in Google Scholar

23. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. Numerical simulation for thermal radiation and porous medium characteristics in flow of CuO-H 2 O nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2019;41(6):249.10.1007/s40430-019-1752-5 Search in Google Scholar

24. Gholinia M, Hosseinzadeh K, Mehrzadi H, Ganji DD, Ranjbar AA. Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions. Case Studies in Thermal Engineering. 2019;13:100356.10.1016/j.csite.2018.11.007 Search in Google Scholar

25. Hosseinzadeh K, Gholinia M, Jafari B, Ghanbarpour A, Olfian H, Ganji DD. Nonlinear thermal radiation and chemical reaction effects on Maxwell fluid flow with convectively heated plate in a porous medium. Heat Transfer—Asian Research. 2019;48(2):744-59.10.1002/htj.21404 Search in Google Scholar

26. Afridi MI, Qasim M, Saleem S. Second law analysis of three dimensional dissipative flow of hybrid nanofluid. Journal of Nanofluids. 2018;7(6):1272-80.10.1166/jon.2018.1532 Search in Google Scholar

27. Chamkha AJ, Dogonchi AS, Ganji DD. Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Advances. 2019;9(2):025103.10.1063/1.5086247 Search in Google Scholar

28. Zangooee MR, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM. Case Studies in Thermal Engineering. 2019;14:100460.10.1016/j.csite.2019.100460 Search in Google Scholar

29. Sheikholeslami M, Jafaryar M, Barzegar GM, Alavi AH.Influence of novel turbulator on efficiency of solar collector system. Environmental Technology and Innovation. 2022;26:102383.10.1016/j.eti.2022.102383 Search in Google Scholar

30. Sheikholeslami M, Ebrahimpour Z. Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape, International Journal of Thermal Sciences. 2022;176:107505. Search in Google Scholar

31. Sheikholeslami M, Farshad SA, Gerdroodbary MB, Alavi AH. Impact of new multiple twisted tapes on treatment of solar heat exchanger. The European Physical Journal Plus. 2022;137:86.10.1140/epjp/s13360-021-02157-6 Search in Google Scholar

32. Zeeshan A, Shehzad N, Atif M, Ellahi R, Sait SM. Electromagnetic Flow of SWCNT/MWCNT Suspensions in Two Immiscible Water-and Engine-Oil-Based Newtonian Fluids through Porous Media. Symmetry. 2022;14(2):406.10.3390/sym14020406 Search in Google Scholar

33. Hafeez MB, Amin R, Nisar KS, Jamshed W, Abdel-Aty AH, Khashan MM, Heat transfer enhancement through nanofluids with applications in automobile radiator, Case Studies in Thermal Engineering. 2021;27:101192.10.1016/j.csite.2021.101192 Search in Google Scholar

34. Bhatti MM, Arain MB, Zeeshan A, Ellahi R, Doranehgard MH. Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. Journal of Energy Storage. 2022;45:103511.10.1016/j.est.2021.103511 Search in Google Scholar

35. Khan AA, Ilyas S, Abbas T, Ellahi R. Significance of induced magnetic field and variable thermal conductivity on stagnation point flow of second grade fluid. Journal of Central South University. 2021;28(11):3381-90.10.1007/s11771-021-4862-z Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo