Accès libre

Modelling of Iron Ore Processing in Technological Units Based on the Hybrid Approach

À propos de cet article

Citez

1. Abonyi J, Babuska JR, Verbruggen HB, Szeifert F. Incorporating prior knowledge in fuzzy model identification. International Journal of Systems Science. 2000; 31:657-667. doi.org/10.1080/002077200290966.10.1080/002077200290966 Search in Google Scholar

2. Bilenko LF. Zakonomernosti izmelcheniya v barabannyih melnitsah [Regularities of grinding in drum mills]. Moscow: Nedra [in Russian]; 1984. Search in Google Scholar

3. Bogatikov VN, Kulakov AG. Ispolzovanie gibridnoy neyronnoy seti v raskryitii neopredelennosti funktsii razrusheniya materia-la pri izmelchenii [Application of the hybrid neural network in disclosing ambiguity of the material destruction function in grinding]. Vestnik Kostromskogo gosudarstvennogo universiteta – Bulletin of Kostroma State University. 2006; 11:29-31 [in Russian]. Search in Google Scholar

4. Bogatikov VN, Kulakov AG, Reev SN. Imitatsionnoe modelirovanie tehnologicheskogo protsessa sokrascheniya krupnosti materiala pri izmelchenii v agregate nepreryivnogo deystviya s zamknutyim tsiklom. Informatsionnyie tehnologii v regionalnom razvitii [Simulations of size reduction processes in grinding in the closed-loop continuous unit. Information technologies in regional development]. Apatityi [in Russian]. 2006. Search in Google Scholar

5. Bublikov A, Tkachov V. Automation of the control process of the mining machines based on fuzzy logic. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2019; 3:112‒118.10.29202/nvngu/2019-3/19 Search in Google Scholar

6. Golik V, Komashchenko V, Morkun V, Burdzieva O. Metal deposits combined development experience. Metallurgical and Mining Industry. 2015; 7(6):591-594. Search in Google Scholar

7. Golik VI, Razorenov YI, Efremenkov AB. Recycling of metal ore mill tailings. Applied Mechanics and Materials. 2014; 682:363-368.10.4028/www.scientific.net/AMM.682.363 Search in Google Scholar

8. Grechnikov AF, Grishanov DG, Pavlov OV, Pushkov AN. Soglasovannoe upravlenie tehnologicheskim kompleksom s posledova-telno soedinennyimi elementami [Cohesive control over a technological comples with sequentially connected elements]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta – Bulletin of Samara State Aerospace University. 2003; 2:29-33 [in Russian]. Search in Google Scholar

9. Gurevich LS. Modelirovanie strukturyi potokov v barabannoy melnitse [Modelling of flow structures in drum mills]. Obogaschenie rud – Ore Concentration. 1989; 2:34-37 [in Russian]. Search in Google Scholar

10. Kafarov VV, Verdiyan MA. Matematicheskie modeli strukturyi potoka materiala v melnitsah [Mathematical models of the structure of material flows in mills]. Moscow: Tsement; 1977. [in Russian]. Search in Google Scholar

11. Kafarov VV, Glebov MB. Matematicheskoe modelirovanie osnovnyih protsessov himicheskih proizvodstv: Uchebnoe posobie dlya vuzov [Mathematical modelling of basic processes of chemical enterprises: Teaching manual for universities]. Moscow: Vysshaya shkola; 1991 [in Russian]. Search in Google Scholar

12. Khmil IV. OsoblivostI tehnologIyi podrIbnennya magnetitovih kvartsitIv v umovah ob’Emnogo nerIvnomIrno-komponentnogo stisnennya. Dis. kandidata tehn. nauk: 05.15.08 [Peculiarities of grinding technology of magnetite quartzite under volumetric irregular-component compression: Candidate’s thesis (Engineering) 05.15.08]; 2016. [in Ukrainian]. Search in Google Scholar

13. Kramer YB. O kinetike nepreryivnogo izmelcheniya [On kinetics of continuous grinding]. Fiziko-mehanicheskie problemyi razrabotki poleznyih iskopaemyih – Physical and mechanical problems of mineral mining. 1986; 130-131 [in Russian]. Search in Google Scholar

14. Kruglov VV. Iskusstvennyie neyronnyie seti. Teoriya i praktika [Artificial neural networks. Theory and practice]. Moscow: Goryachaya liniya–Telekom; 2001 [in Russian]. Search in Google Scholar

15. Linch AD. Tsiklyi drobleniya i izmelcheniya [Cycles of crushing and grinding]. Moscow: Nedra; 1981 [in Russian]. Search in Google Scholar

16. Maryuta AN, Kachan YG, Bunko VA. Avtomaticheskoe upravlenie tehnologicheskimi protsessami obogatitelnyih fabrik [Automated control over technological processes at cancentrating plants]. Moscow: Nedra; 1981 [in Russian]. Search in Google Scholar

17. Morkun V, Morkun N, Tron V, Hryshchenko S. Synthesis of robust controllers of technological units control systems of ore-dressing factory. Eastern-European Journal of Enterprise Technologies. 2018; 1-2(91):37-47.10.15587/1729-4061.2018.119646 Search in Google Scholar

18. Morkun V, Morkun N, Pikilnyak A. The adaptive control for intensity of ultrasonic influence on iron ore pulp, Metallurgical and Mining Industry. 2014; 6:8-11. Search in Google Scholar

19. Morkun V, Morkun N, Tron V. Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation. Metallurgical and Mining Industry. 2015; 7:16-19. Search in Google Scholar

20. Morkun V, Morkun N, Tron V. Distributed control of ore beneficiation interrelated processes under parametric uncertainty, Metallurgical and Mining Industry. 2015; 8:18-21. Search in Google Scholar

21. Morkun V, Morkun N, Tron V. Identification of control systems for ore-processing industry aggregates based on nonparametric kernel estimators, Metallurgical and Mining Industry. 2015; 1:14-17. Search in Google Scholar

22. Morkun V, Morkun N, Tron V. Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation, Metallurgical and Mining Industry. 2015; 10:6-9. Search in Google Scholar

23. Morkun V, Tron V. Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams, Metallurgical and Mining Industry. 2014; 6: 4-7. Search in Google Scholar

24. Olііnуk TA. Doslidzhennia vplivu dinamIchnih efektIv visokoenergetichnogo ultrazvuku na gazovi bulbashky u pulpI dlya upravlInnya parametrami yiyi gazovoi fazy u protsesi flotatsii: zvIt pro NDR [Investigation into dynamic effects of high-energy ultrasound on gas bubbles in slurry to control parameters of its gas phase in floatation: research report]. DVNZ «KrivorIzkiy natsIonalniy unIversitet». Kryvyi Rih; 2016 [in Ukrainian]. Search in Google Scholar

25. Pevzner LD, Kostikov VG, Lettiev OA, Kostikov RV. Razrabotka i issledovanie matematicheskoy modeli protsessa rudoizmelche-niya [Development of and investigation into the mathematical model of ore grinding]. Gornyiy informatsionno-analiticheskiy byulleten (nauchnotehnicheskiy zhurnal) – Mining information-analytical bulluten (scientific and technical journal). 2012; 11:312-320 [in Russian]. Search in Google Scholar

26. Porkuian O, Morkun V, Morkun N, Serdyuk O. Predictive control of the iron ore beneficiation process based on the Hammerstein hybrid model, Acta Mechanica et Automatica. 2019; 13(4):262-270. Search in Google Scholar

27. Porkuian O, Morkun V, Morkun N. Measurement of the ferromagnetic component content in the ore suspension solid phase, Ultrasonics. 2020; 105:106103. Search in Google Scholar

28. Stupnik N, Kalinichenko V, Pismennij S, Kalinichenko E. Features of underlying levels opening at «ArcelorMittal Krivyi Rih» underground mine. In: New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining. 2015; 39-44.10.1201/b19901-8 Search in Google Scholar

29. Stupnik M, Kolosov V, Pysmennyi S, Kovbyk K. Selective mining of complex stuctured ore deposits by open stope systems. E3S Web of Conferences. 2019; 123:01007.10.1051/e3sconf/201912301007 Search in Google Scholar

30. Shupov LP. Modelirovanie i raschet na EVM shem obogascheniya [Simulation and computer calculation of concentration schemes]. Moscow: Nedra; 1980 [in Russian]. Search in Google Scholar

31. Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man and Cybernetics. 1985; 15(1):116-132.10.1109/TSMC.1985.6313399 Search in Google Scholar

32. Tihonov ON. Zakonomernosti effektivnogo razdeleniya mineralov v protsessah obogascheniya poleznyih iskopaemyih [Regularities of effective separation of minerals in concentration processes]. Moscow: Nedra; 1984 [in Russian]. Search in Google Scholar

33. Tulleken HJAF. Gray-box modelling and identification using pysical knowledge and Bayesian techniques. Automatica. 1993; 29:285-308.10.1016/0005-1098(93)90124-C Search in Google Scholar

34. Tuz AA, Sanaeva GN, Prorokov AE, Bogatikov VN. Nechiotkologicheskiy podhod k modelirovaniyu protsessa izmelcheniya v agre-gate nepreryivnogo deystviya s zamknutyim tsiklom Aktsionernogo Obschestva «Kovdorskiy gorno-obogatitelnyiy kombinat» [Fuzzy-logic approach to modelling grinding in the closed-loop continuous unit of the JSC „Kovdor Mining Concentrating Works”]. Internet-zhurnal “NAUKOVEDENIYE” – Internet-journal “SCIENCE STUDIES”. 2016; 8(1). https://cyberleninka.ru/article/n/nechyotko-logicheskiy-podhod-kmodelirovaniyu-protsessa-izmelcheniya-v-agregate-nepreryvnogodeystviya-s-zamknutym-tsiklom [in Russian]. Search in Google Scholar

35. Tuz AA, Sanayeva GN, Prorokov AY, Bogatikov VN. Upravlenie tehnologicheskimi protsessami izmelcheniya i osnovnyie napravleniya ih avtomatizatsii [Control over grinding processes and basic trends of their automation]. Vestnik evraziyskoy nauki – Bulletin of Eurasian Science. 2016; 8(2):130–131 [in Russian]. Search in Google Scholar

36. Zlatorunskaya GE. Otsenka izmelchaemosti droblenoy rudyi po ee granulometricheskoy harakteristike [Assessment of ground ore by its granulometric characteristic]. Obogaschenie rud – Ore Concentration. 1985; 2 [in Russian]. Search in Google Scholar

37. Zolotkov NF, Dyomin VT, Kontsevoy AV, Smirnov SV. Modernizatsiya i razvitie sistem avtomatizirovannogo kontrolya i upravleniya [Updating and development of automated control systems]. Gornyi zhurnal – Mining Journal. 2012; 10:91-96 [in Russian]. Search in Google Scholar