Accès libre

Multi-Objective Optimisation of the Electric Wheelchair Ride Comfort and Road Holding Based on Jourdain’s Principle Model and Genetic Algorithm

À propos de cet article

Citez

1. Ahmad S, Tokhi M, Toha S. Genetic Algorithm Optimisation for Fuzzy Control of Wheelchair Lifting and Balancing. Uksim European Symposium On Computer Modeling And Simulation. 2009.10.1109/EMS.2009.115 Search in Google Scholar

2. Anandan A, Kandavel A. Investigation and performance comparison of ride comfort on the created human vehicle road integrated model adopting genetic algorithm optimized proportional integral derivative control technique. Proceedings Of The Institution Of Mechanical Engineers Part K: Journal Of Multi-Body Dynamics. 2020; 234(2): 288-305.10.1177/1464419320906688 Search in Google Scholar

3. Balkwill J. Performance vehicle dynamics: Engineering and Applications. Elsevier. 2018. Search in Google Scholar

4. Chen S, Shi T, Wang D, Chen J. Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II. Journal Of Mechanical Science And Technology. 2015; 29(3):1007-1018.10.1007/s12206-015-0215-x Search in Google Scholar

5. Dad K, Khan M, Jie W, Lee M. A low cost genetic algorithm based control scheme for wheelchair control in hospital environment. Proceedings Of International Conference On Artificial Life And Robotics. 2016; 21:212-216.10.5954/ICAROB.2016.GS9-3 Search in Google Scholar

6. Deb K. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Ltd. 2001. Search in Google Scholar

7. Dodds C, Robson J. The description of road surface roughness. Journal Of Sound And Vibration. 1973; 31(2):175-183.10.1016/S0022-460X(73)80373-6 Search in Google Scholar

8. Fossati G, Miguel L, Casas W. Multi-objective optimization of the suspension system parameters of a full vehicle model. Optimization And Engineering. 2018; 20(1):151-177.10.1007/s11081-018-9403-8 Search in Google Scholar

9. Garcia de Jalon J, Bayo E. Kinematic and dynamic simulation of multibody systems. Springer. 1984. Search in Google Scholar

10. Gill P, Murray W, Wright M. Practical optimization. SIAM. 2019.10.1137/1.9781611975604 Search in Google Scholar

11. Hahn H. Rigid body dynamics of mechanisms. Springer. 2003.10.1007/978-3-662-09769-4 Search in Google Scholar

12. https://www.karmanhealthcare.com/product/xo-202/ [online cit.: 2020.06.16]. Search in Google Scholar

13. https://www.mathworks.com/help/gads/gamultiobj-algorithm.html. [online cit.: 2021.01.29]. Search in Google Scholar

14. Hurel J, Mandow A, Garcia-Cerezo A. Nonlinear two-dimensional modeling of a McPherson suspension for kinematics and dynamics simulation. 12Th IEEE International Workshop On Advanced Motion Control (AMC). 2012.10.1109/AMC.2012.6197009 Search in Google Scholar

15. Jazar R. Vehicle dynamics – theory and application (3rd ed.). Springer. 2017.10.1007/978-3-319-53441-1 Search in Google Scholar

16. Jourdain P. Note on an Analogue of Gauss Principle of Least Constraint. The Quarterly Journal of Pure and Applied Mathematics. 1909; 40:153-157. Search in Google Scholar

17. Kane T. Dynamics of Nonholonomic Systems. Journal Of Applied Mechanics. 1961; 28(4):574-578.10.1115/1.3641786 Search in Google Scholar

18. Kane T, Levinson D. The Use of Kane’s Dynamical Equations in Robotics. The International Journal Of Robotics Research. 1983; 2(3):3-21.10.1177/027836498300200301 Search in Google Scholar

19. Messac A. Optimization in practice with MATLAB for engineering students and professionals. Cambridge University Press. 2015.10.1017/CBO9781316271391 Search in Google Scholar

20. Nariman-Zadeh N, Salehpour M, Jamali A, Haghgoo E. Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA):Engineering Applications Of Artificial Intelligence. 2010; 23(4):543-551. Search in Google Scholar

21. Pacejka H, Besselink I. Tire and vehicle dynamics. Elsevier/BH. 2012. Search in Google Scholar

22. Papastavridis J. On Jourdain’s principle. International Journal Of Engineering Science. 1992; 30(2):135-140.10.1016/0020-7225(92)90046-J Search in Google Scholar

23. Paulter N, Larson D, Blair J. The IEEE Standard on Transitions. Pulses. and Related Waveforms. Std-181-2003. IEEE Transactions On Instrumentation And Measurement. 2004; 53(4):1209-1217.10.1109/TIM.2004.831470 Search in Google Scholar

24. Piedboeuf J. Kane’s equations or Jourdain’s principle?. Proceedings Of 36Th Midwest Symposium On Circuits And Systems. 1993. Search in Google Scholar

25. Reynoso-Meza G, Blasco X, Sanchis J, Herrero J. Comparison of design concepts in multi-criteria decision-making using level diagrams. Information Sciences. 2003; 221:124-141.10.1016/j.ins.2012.09.049 Search in Google Scholar

26. Rill G. Road vehicle dynamics. CRC Press. 2012.10.1201/9781439897447 Search in Google Scholar

27. Roberson R, Schwertassek R. Dynamics of Multibody Systems. Springer Berlin Heidelberg. 1988.10.1007/978-3-642-86464-3 Search in Google Scholar

28. Sankardoss V, Geethanjali P. Parameter estimation and speed control of a PMDC motor used in wheelchair. Energy Procedia. 2017; 117:345-352.10.1016/j.egypro.2017.05.142 Search in Google Scholar

29. Seifi A, Hassannejad R, Hamed M. Use of nonlinear asymmetrical shock absorbers in multi-objective optimization of the suspension system in a variety of road excitations. Proceedings Of The Institution Of Mechanical Engineers. Part K: Journal Of Multi-Body Dynamics. 2016; 231(2):372-387. Search in Google Scholar

30. Shabana A. Computational dynamics. John Wiley & Sons. 2010.10.1002/9780470686850 Search in Google Scholar

31. Shirahatti A, Prasad P, Panzade P, Kulkarni M. Optimal design of passenger car suspension for ride and road holding. Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. 2008; 30(1):66-76.10.1590/S1678-58782008000100010 Search in Google Scholar

32. Sinha B. Influence of road unevenness on road holding and ride comfort. Stockholm: Department of Machine element deesign. Royal Institute of Technology. 1973. Search in Google Scholar

33. Van der Sande T, Besselink I, Nijmeijer H. Rule-based control of a semi-active suspension for minimal sprung mass acceleration: design and measurement. Vehicle System Dynamics. 2016; 54(3):281-300.10.1080/00423114.2015.1135970 Search in Google Scholar

34. Vingback J, Jeppsson P, van Deventer J. Evaluating Ride Comfort for Wheelchair Passengers Utilizing a Motionbase Simulator. 16Th International Conference On Advanced Vehicle Technologies; 11Th International Conference On Design Education; 7Th Frontiers In Biomedical Devices. 2014; 3.10.1115/DETC2014-34956 Search in Google Scholar

35. Wang S, Zhao L, Hu Y, Yang F. Vibration Characteristics Analysis of Convalescent-Wheelchair Robots Equipped with Dynamic Absorbers. Shock And Vibration. 2018; 1-16.10.1155/2018/5393051 Search in Google Scholar