À propos de cet article

Citez

1. Derhami S, Smith JS, Gue KR. Optimising space utilisation in block stacking warehouses. Int J Of Prod Res. 2017; 55(21):6436-6452.10.1080/00207543.2016.1154216 Search in Google Scholar

2. Ghalehkhondabi I. Masel DT. Storage allocation in a warehouse based on the forklifts fleet availability. Journal Of Algorithms & Computational Technology. 2018; 12(2):127-135.10.1177/1748301818761130 Search in Google Scholar

3. Heragu SS, Cai X, Krishnamurthy A, Malmborg CJ. Analytical models for analysis of automated warehouse material handling systems. Int J Of Prod Res. 2011; 49(22);6833-6861.10.1080/00207543.2010.518994 Search in Google Scholar

4. Sulirova I, Zavodska L, Rakyta M, Pelantova V. State-of-the-art approaches to material transportation handling and warehousing. 12th International scientific conference of young scientists on sustainable modern and safe transport. Procedia Engineering. 2017; 192:857-862. Search in Google Scholar

5. Boywitz D, Boysen N. Robust storage assignment in stack- and queue-based storage systems. Computers & Operations Research. 2018; 100:189-200.10.1016/j.cor.2018.07.014 Search in Google Scholar

6. Accorsi R, Baruffaldi G, Manzini R. Design and manage deep lane storage system layout. An iterative decision-support model. Int J Adv Manuf Technol. 2017; 92(1-4):57-67.10.1007/s00170-016-9962-9 Search in Google Scholar

7. Eo J, Sonico J, Su A, Wang W, Zhou C, Zhu Y, Wu S, Chokshi T. Structured comparison of pallet racks and gravity flow racks. IIE Annual Conference and Expo. 2015; 1971-1980. Search in Google Scholar

8. Wu S, Wu Ya, Wang Ya. A structured comparison study on storage racks system. Journal of Residuals Science & Technology. 2016; 13(8). Search in Google Scholar

9. Vujanac R, Miloradovic N, Vulovic S. Dynamic storage systems. ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering. 2016; XIV:79-82. Search in Google Scholar

10. Safronov E, Nosko A. A Method to Determine Allowable Speed for a Unit Load in a Pallet Flow Rack. Acta Mechanica et Automatica 2019; 13(2):80-85.10.2478/ama-2019-0011 Search in Google Scholar

11. Safronov E, Sharifullin I, Nosko A. Ustroystva bezopasnoy ekspluatatsii gravitatsionnykh rolikovykh konveyyerov palletnogo tipa: Monografiya [Devices for safe operation of pallet type gravity roller conveyors: Monograph] Universitetskaya kniga Moscow (in Russian). 2018. Search in Google Scholar

12. Kamenskaya NI, Sein VA, Zvereva MI. A Study of the Causes of Failure of Permanent Magnets from Cast Hard Magnetic Alloys Metal. Science and Heat Treatment. 2017; 59:232-236.10.1007/s11041-017-0134-9 Search in Google Scholar

13. Sharifullin I, Nosko A, Safronov E. Matematicheskaya model’ protsessa dvizheniya pallety po tormoznomu roliku magnitnogo tipa [Mathematical model of the motion pallet process on brake magnetic type roller]. The Russian Automobile and Highway Industry Journal. 2020; 17(3):364-373 (in Russian).10.26518/2071-7296-2020-17-3-364-373 Search in Google Scholar

14. Ozolin AU, Skubov DU, Shtukin LV. Sposoby tormozheniya padayushchego lifta s pomoshch’yu postoyannykh magnitov [Methods of braking a falling elevator with the help of permanent magnets] Nauchno-tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta 2008; 6(70):82-86 (in Russian). Search in Google Scholar

15. Safronov E, Nosko A. Influence of the brake lining position on the efficiency of the centrifugal friction roller. IOP Conference Series: Materials Science and Engineering. 2020: 709(2).10.1088/1757-899X/709/2/022086 Search in Google Scholar

16. Simeu E, Georges D. Modeling and control of an eddy current brake. Control Engineering Practise. 1996; 14(1):19-26.10.1016/0967-0661(95)00202-4 Search in Google Scholar

17. Ozolin AU, Skubov DU, Shtukin LV. Issledovaniye vikhretokovogo diskovogo tormoza [Research eddy current disc brake]. Nauchnotekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. 2009: 1(74):57-60 (in Russian). Search in Google Scholar

18. Luskan’ OA. Opredeleniye skorosti transportirovaniya shtuchnykh gruzov na inertsionnom rolikovom konveyyer [Determining the speed of transportation of piece goods on an inertial roller conveyor]. Izv TulGU Pod”yemno-transportnyye mashiny i oborudovaniye. 2003; 4:84-89 (in Russian). Search in Google Scholar

19. Zenkov RL, Ivashkov II, Kolobov LN. Mashiny nepreryvnogo transporta [Continuous transport machines]. Moscow (in Russian). 1997. Search in Google Scholar

20. Luskan’ OA. Teoreticheskiye osnovy peremeshcheniya gruzov impul’snymi konveyyerami [Theoretical Foundations of the Movement of Goods by Pulse Conveyors]. Saratov (in Russian). 2010. Search in Google Scholar

21. Luskan’ OA. Inzhenernyy raschet impul’snykh konveyyerov [Engineering calculation of pulse conveyors]. Saratov (in Russian). 2011. Search in Google Scholar

22. Hollowell TC, Kahl JT, Stanczak MD, Wang Y. Eddy Current Brake Design for Operation with Extreme Back-drivable Eddy Current Motor. Mechanical Engineering Undergraduates. 2010. Search in Google Scholar

23. Andrew HC, Hayward V. Eddy Current Brakes for Haptic Interfaces: Design Identification and Control. IEEE/ASME Transactions on Mechatronics. 2008; 13(6):669-677.10.1109/TMECH.2008.2004623 Search in Google Scholar

24. Kerem K, Afzal S, Park EJ. Analytical modeling of eddy current brakes with the application of the time varying magnetic fields. Applied Mathematical Modeling. 2015; 1168-1179.10.1016/j.apm.2015.07.006 Search in Google Scholar

25. Kerem K, Park EJ, Afzal S. Improved braking torque generation capacity of an eddy current brake with time varying magnetic fields: A numerical study. Finite Elements in Analysis and Design. 2012; 59:66-7510.1016/j.finel.2012.05.005 Search in Google Scholar

26. Lee K, Park K. Modeling eddy currents with boundary conditions by sing Coulomb’s law and the method of images. IEEE Transactions on Magnetics. 2002; 38(2):1333-1340.10.1109/20.996020 Search in Google Scholar

27. Heald MA. Magnetic braking: Improved theory. American Journal of Physics. 1988; 56(6):521-522.10.1119/1.15570 Search in Google Scholar

28. Anwar S. A parametric model of an eddy current electric machine for automotive braking applications. IEEE Transactions on Control Systems Technology. 2002; 12(13):422-427. Search in Google Scholar

29. Shin HJ, Choi JY, Cho HW, Jang SM. Analytical torque calculations and Experimental testing of permanent magnet Axial eddy current brake. IEEE Transactions of Magnetics. 2013; 49(7):4152-4155.10.1109/TMAG.2013.2250932 Search in Google Scholar

30. Sharifullin I, Nosko A, Safronov E, Kirillov D. Experimental study of eddy current braking applicable to gravity roller conveyor. Fundamental and Applied Problems of Engineering and Technology. 2020; 342(4-1):106-116.10.33979/2073-7408-2020-342-4-1-106-116 Search in Google Scholar

31. Ghomri L, Sari Z. Mathematical modeling of the average retrieval time for flow-rack automated storage and retrieval systems. J Manuf Syst. 2017; 44:165-178.10.1016/j.jmsy.2017.05.002 Search in Google Scholar

32. Thompson MT. Permanent magnet electrodynamic brakes design principles and scaling laws. Online Symposium for Electrical Engineers. 2009. Search in Google Scholar