À propos de cet article

Citez

1. Adamski W. Manufactuing development strategies in aviation industry. Advances in Manufacturing Science and Technology. 2010; 34(3):73-84. Search in Google Scholar

2. Bałon P, Rejman E, Smusz R, Szostak J, Kiełbasa, B. Implementation of high speed machining in thin-walled aircraft integral elements. DE GRUYTER Open Engineering. 2018; 8:162-169.10.1515/eng-2018-0021 Search in Google Scholar

3. Bałon P, Szostak J, Kiełbasa B, Rejman E, Smusz R. Application of High Speed Machining Technology in Aviation. 21st International ESAFORM Conference on Material Forming. 2018.10.1063/1.5034899 Search in Google Scholar

4. Bałon P, Rejman E, Smusz R, Szostak J, Kiełbasa, B. High Speed Milling in thin-walled aircraft structures. Applied Computer Science. 2018; 14(2):82-95.10.35784/acs-2018-15 Search in Google Scholar

5. Burek J, Płodzień M. Wysoko wydajna obróbka części ze stopów aluminium o złożonych kształtach. Mechanik. 2012; 7:542-549. Search in Google Scholar

6. Calatoru VD, Balazinski W, Mayer JRR, Paris H, L’Esperance G. Diffusion wear mechanism during high-speed machining of 7475-T7351 aluminium alloy with carbide end mills. Wear. 2008; 265(11-12):1793-1800.10.1016/j.wear.2008.04.052 Search in Google Scholar

7. Feld M. Obróbka skrawaniem stopów aluminium. Wydawnictwo Naukowo-Techniczne. Warsaw; 1984. Search in Google Scholar

8. Kiełbasa B, Bałon P, Świątoniowski A. Fatigue fracture analysis of composite plates with an elliptical hole. Strength of Materials. 2017; 49(4).10.1007/s11223-017-9893-1 Search in Google Scholar

9. Kłonica M, Matuszak J, Pieśko P, Włodarczyk M, Zaleski K, Kuczmaszewski J, Pałka T, RusinekR, Zagórski I. Obróbka skrawaniem stopów aluminium i magnezu. Monografie – Politechnika Lubelska; 2015. Search in Google Scholar

10. Kuczmaszewski J, Pieśko P, Zawada-Michałowska M. Influence of Milling Strategies of Thin-walled Elements on Effectiveness of their Manufacturing. Procedia Engineering. 2017; 182:381-186.10.1016/j.proeng.2017.03.117 Search in Google Scholar

11. Lundblad M. Influence of Cutting Tool Geometry on Residual Stress in the Workpiece, Proc. Third Wave AdvantEdge User’s Conference. Atlanta, GA, Paper 7; 2002. Search in Google Scholar

12. Mativenga PT, Hon KKB. An experimental study of cutting force in high speed end milling and implications for dynamic force modeling. Journal of Manufacturing Science and Engineering. 2005; 127(2): 251-261.10.1115/1.1863254 Search in Google Scholar

13. Pieśko P, Zagórski I. Analiza porównawcza metod frezowania HSM, HPC oraz frezowania konwencjonalnego wysokokrzemowych stopów aluminium. Postępy Nauki i Technik. 2011; 7:219-226. Search in Google Scholar

14. Shih AJ, Yang HTY. Experimental and Finite Element Predictions of Residual Stresses Due to Orthogonal Metal Cutting. Int. J. Num. Meth. Eng. 1993; 36:1487-1507. Search in Google Scholar

15. Morey B. High-speed machining for aerospace. Manuf. Eng. 2008; 140(3). Search in Google Scholar

16. Shulz H, Dashchenko A. High speed machining Chapter 7, Manufacturing Technologies for Machines of the Future 21st Century Technologies, Search in Google Scholar

17. Dewes RC, Apsinwall DK. Review of Ultra High Speed Milling of Hardened Steels. Journal of Materials Processing Technology, 1997; 69(1-3);1-17.10.1016/S0924-0136(96)00042-8 Search in Google Scholar

18. Hon KKB. The Impact of High Speed Machining on Computing and Automation. International Journal of Automation and Computing. 2006; 1: 63-68.10.1007/s11633-006-0063-3 Search in Google Scholar

19. Mativenga PT. Hon KKB. An Experimental Study of Cutting Force in High Speed End Milling and Implications for Dynamic Force Modelling. Journal of Manufacturing Science and Engineering, Transactions of the American Society of Mechanical Engineers, 2005; 127(2):251–261. Search in Google Scholar