Accès libre

Experimental Evaluation of Circuit Board Components Under Extreme Conditions

À propos de cet article

Citez

1. Smith W. M. Worst case circuit analysis-an overview (electronic parts/circuits tolerance analysis), Proc. Annu. Reliab. Maintainab. Symp. 1996; 326-334. Search in Google Scholar

2. Anceaume A., Cabillic G., Chevochot P., Puaut I. A middleware support for distributed safety-critical real-time applications, In Proc. of the 18th Inter. Conf. Distrib. Comp. Syst. 1998; 344–351. Search in Google Scholar

3. Colin A., Bernat G. Scope-tree: A program representation for symbolic worst-case execution time analysis, Proc. 14th Euromicro Conf. of Real-Time Syst. 2002; 50-59. Search in Google Scholar

4. Colin A., Puaut I. Worst case execution time analysis for a processor with branch prediction, Real-Time Syst. 2000;18: 249-274. Search in Google Scholar

5. Carlsson M., Engblom J., Ermedahl A., Lindblad J., Lisper B. Worst-case execution time analysis of disable interrupt regions in a commercial real-time operating system, Proc. Inter. Work. Real-Time Tools. 2002; 1-12. Search in Google Scholar

6. Engblom J., Static properties of embedded real-time programs and their implications for worst-case execution time analysis, Proc. IEEE Real-Time Tech. Appl. Symp. 1999; 46-55. Search in Google Scholar

7. Jacques S., Batut N., Leroy R., Gonthier L. Aging test results for high temperature triacs during power cycling, Proc. IEEE Pwr. Electro. Spec. Conf. 2008; 2447-2452.10.1109/PESC.2008.4592308 Search in Google Scholar

8. Lien W., Damrongplasit N., Paredes J.H., Senesky D.G., Liu T.K., Pisano A.P. 4H-SiC N-Channel JFET for operation in high-temperature environments, IEEE J. Electron Devices Soc. 2014; 2(6): 4–7 Search in Google Scholar

9. Shwarts Y. M., Sokolov V. N., Shwarts M. M., Fedorov I. A., Venger E. F. Advanced silicon diode temperature sensors with minimized self-heating and noise for cryogenic applications, Proc. Inter. Euro. Conf. Adv. Semicond. Dev. Microsyst. 2000; 351-354. Search in Google Scholar

10. Ferlet-Cavrois V., Colladant T., Paillet P., Leray J.L., Musseau O., Worst-case bias during total dose irradiation of SOI transistors, IEEE Trans. Nuc. Sci. 2000; 47(6): 2183 – 2188. Search in Google Scholar

11. Lynch W. T. Wosrt-Case Analysis of a fesistor memory matrix, IEEE Trans. Comput. 1969; 18(10): 940-942. Search in Google Scholar

12. Marcovitz M., Seif E. Analytical design of resistor-coupled transistor logical circuit, IRE Trans. Elect. Comp. 1958; 7(2): 109-119. Search in Google Scholar

13. Tian W., Ling X. T., Liu R.W. Novel methods for circuit worst-case tolerance analysis, IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 1996; 43(4): 272-278. Search in Google Scholar

14. Donnelly T.J., Pekarek S.D., Fudge D., Vaks N., Zarate N. Predicting Worst Case Common-Mode behavior in power electronic based systems, IEEE Electr. Ship. Tech. Symp. 2019; 396-402.10.1109/ESTS.2019.8847723 Search in Google Scholar

15. Spence R., Soin R. S., Tolerance design of electronic circuits, Imperial College Press; 1988. Search in Google Scholar

16. Divekar D.A. DC statistical circuit analysis for bipolar IC’s using parameter correlations – an experimental example, Ieee T Comput Aid D. 2006; 101-103.10.1109/TCAD.1984.1270062 Search in Google Scholar

17. Riley J. C. The accuracy of series and parallel connections of four-teminal resistors, IEEE Trans. Instrum. Meas. 1967; 16(3): 258-268.10.1109/TIM.1967.4313632 Search in Google Scholar

18. Sokół K., Ptak P. Experimental verification of mathematical models for failure estimation of electronic systems, Acta Phys. Pol. A 2020; 2(138): 207-209. Search in Google Scholar

19. Hillebrand M., Paul T. Dealing with I/O devices in the context of pervasive system verification, Inter. Conf. Comp. Dsg. 2005; 309-316. Search in Google Scholar

20. Nassif S.R., Strojwas A.J., Director S.W. A methodology for Worst-Case Analysis of integrated circuits, Ieee Ieee T Comput Aid D. 1986; 5(1): 104 – 113. Search in Google Scholar

21. Rafaila M., Decker C., Grimm C., Pelz G. Simulation-based sensitivity and worst-case analyses of automotive electronics, IEEE Symp. Dsg. Diag. Elec. Circ. Syst., 2010; 309-312.10.1109/DDECS.2010.5491760 Search in Google Scholar

22. Maly W., Strojwas A.J. Statistical simulation of the IC manufacturing process, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 1982; 1(3): 120-131. Search in Google Scholar

23. Nassif S.R., Strojwas A.J., Director S.W. FABRICS II: A statistically based IC fabrication process simulator, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 1984; 3(1): 40-46,10.1109/TCAD.1984.1270055 Search in Google Scholar

24. Lanchester P. C. Digital thermometer circuit for silicon diode sensors, Cryogenics 1989; 29 (12): 1156-1159. Search in Google Scholar

25. Mansoor M., Haneef I., Akhtar S., De Luca A., Udrea F. Silicon diode temperature sensors — A review of applications, Sens. Actuator A Phys. 2015; 232 (1): 63-74.10.1016/j.sna.2015.04.022 Search in Google Scholar

26. Szmyrka-Grzebyk A., Lipiński L. Linear diode thermometer in the 4–300 K temperature range, Cryogenics 1995; 35(4): 281-284. Search in Google Scholar

27. Efron B., Tibshirani R. Statistical data analysis in the computer age, Science 1991; 253 (5018): 390-395. Search in Google Scholar

28. Zięba A. Analiza danych w naukach ścisłych i technice [Data analysis in exact sciences and technology], Wydawnictwo Naukowe PWN; 2013. Search in Google Scholar

29. Harry M., Ronald Lawson J. Six Sigma Producibility Analysis and Process Characterization, Addison-Wesley; 1992. Search in Google Scholar

30. Yang K., El-Haik B. Design for six sigma: A Roadmap for Product Development, The MacGraw-Hill Companies; 2003. Search in Google Scholar

31. White R. V. An Introduction to Six Sigma with a design example, Ann. Appl. Pwr. Elec. Conf. Exps. 1992; 28-35. Search in Google Scholar

32. Majchrzak E., Mochnacki B. Metody numeryczne [Numerical methods], Wydawnictwo Politechniki Śląskiej; 2004. Search in Google Scholar

33. Sorokin A. E. Experimental verification of a mathematical model for a heat store, Russ. Eng. Res. 2021; 41: 742–744.10.3103/S1068798X21080207 Search in Google Scholar