À propos de cet article

Citez

1. Ahsan SN, Aureli M. Minimization of Hydrodynamic Power Losses in Oscillating Submerged Structures by a Novel Shape-Morphing Strategy. Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control. 2016; 2: 12-14. Search in Google Scholar

2. Akin LS, Mross JJ. Theory for the Effect of Windage on the Lubricant Flow in the Tooth Spaces of Spur Gears. Journal of Engineering for Industry. 1975;97(4):1266-1272.10.1115/1.3438742 Search in Google Scholar

3. Amani A, Spitas C, Spitas V. Generalised non-dimensional multi-parametric involute spur gear design model considering manufacturability and geometrical compatibility. Mechanism and Machine Theory. 2017;109:250-277.10.1016/j.mechmachtheory.2016.11.012 Search in Google Scholar

4. Barone S. Gear Geometric Design by B-Spline Curve Fitting and Sweep Surface Modelling. Engineering with Computers. 2001;17(1):66-74.10.1007/s003660170024 Search in Google Scholar

5. Blok H. Hydrodynamic effects on friction in rolling with slippage. Biolwelle Joseph B. Rolling contact phenomena. Amsterdam: Elsevier; 1962. Search in Google Scholar

6. Bolotovskiy I, Gurev B, Smirnov V, Shenderey B. Cylindrical involute gears in external gearing. Moskva: Mashinostroenie (in Russian); 1974. Search in Google Scholar

7. Changenet C, Velex P. A Model for the Prediction of Churning Losses in Geared Transmissions—Preliminary Results. Journal of Mechanical Design. 2006;129(1):128-33.10.1115/1.2403727 Search in Google Scholar

8. Changenet C, Velex P. Housing Influence on Churning Losses in Geared Transmissions. Journal of Mechanical Design. 2008;130(6).10.1115/1.2900714 Search in Google Scholar

9. Changenet C, Oviedo-Marlot X, Velex P. Power Loss Predictions in Geared Transmissions Using Thermal Networks-Applications to a Six-Speed Manual Gearbox. Journal of Mechanical Design. 2005;128(3):618-625.10.1115/1.2181601 Search in Google Scholar

10. Chen C-F, Tsay C-B. Tooth profile design for the manufacture of helical gear sets with small numbers of teeth. International Journal of Machine Tools and Manufacture. 2005;45(12):1531-1541. Search in Google Scholar

11. Chen G, Li H, Liu Y. Double-arc harmonic gear profile design and meshing analysis for multi-section conjugation. Advances in Mechanical Engineering. 2019;11(5):168781401985065.10.1177/1687814019850656 Search in Google Scholar

12. Chen H, Zhang X, Cai X, Ju Z, Qu C, Shi D. Computerized design, generation and simulation of meshing and contact of hyperboloidal-type normal circular-arc gears. Mechanism and Machine Theory. 2016;96:127-145.10.1016/j.mechmachtheory.2015.08.022 Search in Google Scholar

13. Concli F, Gorla C. Analysis of the Oil Squeezing Power Losses of a Spur Gear Pair by Mean of CFD Simulations. Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering. 2012: 1-8.10.1115/ESDA2012-82591 Search in Google Scholar

14. Daily JW, Nece RE. Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks. Journal of Basic Engineering. 1960;82(1):217-230.10.1115/1.3662532 Search in Google Scholar

15. Dawson PH. Windage Loss in Larger High-Speed Gears. Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering. 1984;198(1):51-59.10.1243/PIME_PROC_1984_198_007_02 Search in Google Scholar

16. Dawson P. High speed gear windage GEC Review. GEC Review. 1988;43(3):164-167. Search in Google Scholar

17. Sheng W, Li Z, Zhang H, Zhu R. Geometry and design of spur gear drive associated with low sliding ratio. Advances in Mechanical Engineering. 2021;13(4):168781402110125.10.1177/16878140211012547 Search in Google Scholar

18. Franulovic M, Markovic K, Vrcan Z, Soban M. Experimental and analytical investigation of the influence of pitch deviations on the loading capacity of HCR spur gears. Mechanism and Machine Theory. 2017;117:96-113.10.1016/j.mechmachtheory.2017.07.006 Search in Google Scholar

19. Heingartner P, Mba D. Determination power losses in the helical gear mesh. Gear technology. 2005;22(5):32-37. Search in Google Scholar

20. Hlebanja G. S-Gears for Wind Power Turbine Operating Conditions. Machine Design. 2012;4(3):123-130. Search in Google Scholar

21. Gao Q, Ye J, Liu C. Design and modeling of noncircular gear with curvature radius function. Journal of Computational Methods in Sciences and Engineering. 2018;18(3):683-689.10.3233/JCM-180819 Search in Google Scholar

22. Ioselevich G.B. Machine parts. Moskva: Mashinostroenie (in Russian); 1988. Search in Google Scholar

23. Kapelevich A. Geometry and design of involute spur gears with asymmetric teeth. Mechanism and Machine Theory. 2000;35(1):117-130.10.1016/S0094-114X(99)00002-6 Search in Google Scholar

24. Karpov O, Nosko P, Fil P, Nosko O, Olofsson U. Prevention of resonance oscillations in gear mechanisms using non-circular gears. Mechanism and Machine Theory. 2017;114:1-10.10.1016/j.mechmachtheory.2017.03.010 Search in Google Scholar

25. Senthil Kumar V, Muni D, Muthuveerappan G. Optimization of asymmetric spur gear drives to improve the bending load capacity. Mechanism and Machine Theory. 2008;43(7):829-858.10.1016/j.mechmachtheory.2007.06.006 Search in Google Scholar

26. Lechner G, Naunheimer H. Automotive Transmissions-Fundamentals, Selection, Design and Application. 1st ed. Berlin: Springer; 1999. Search in Google Scholar

27. Litvin F. Gear theory. Moskva: Nauka (in Russian); 1968. Search in Google Scholar

28. Litvin F, Lu J. Computerized simulation of generation, meshing and contact of double circular-arc helical gears. Mathematical and Computer Modelling. 1993;18(5):31-47.10.1016/0895-7177(93)90131-H Search in Google Scholar

29. Litvin F, Lu J. Computerized design and generation of double circular-arc helical gears with low transmission errors. Computer Methods in Applied Mechanics and Engineering. 1995;127(1):57-86.10.1016/0045-7825(95)00849-8 Search in Google Scholar

30. Litvin FL, Fuentes A, Zanzi C, Pontiggia M. Design, generation, and stress analysis of two versions of geometry of face-gear drives. Mechanism and Machine Theory. 2002;37(10):1179-1211.10.1016/S0094-114X(02)00050-2 Search in Google Scholar

31. Mann RW, Marston CH. Friction Drag on Bladed Disks in Housings as a Function of Reynolds Number, Axial and Radial Clearance, and Blade Aspect Ratio and Solidity. Journal of Basic Engineering. 1961;83(4):719-723.10.1115/1.3662307 Search in Google Scholar

32. Niemann G, Winter H. Maschinenelemente. 2nd ed. Berlin (in German): Springer; 2003. (Band 2: Getriebeallgemein, Zahnradgetriebe – Grundlagen, Stirnradgetriebe).10.1007/978-3-662-11873-3_2 Search in Google Scholar

33. Pechersky M. An analysis of fluid flow between meshing spur gear teeth. MS thesis, Pennsylvania State University, State College, PA. 1987. Search in Google Scholar

34. Polly J, Talbot D, Kahraman A, Singh A, Xu H. An Experimental Investigation of Churning Power Losses of a Gearbox. Journal of Tribology. 2018;140(3): 031102.10.1115/1.4038412 Search in Google Scholar

35. Reshetov D. Detali mashin. Moskva: Mashinostroenie (in Russian).; 1989. Search in Google Scholar

36. Seetharaman S, Kahraman A, Moorhead MD, Petry-Johnson TT. Oil Churning Power Losses of a Gear Pair: Experiments and Model Validation. Journal of Tribology. 2009;131(2):1-9.10.1115/1.3085942 Search in Google Scholar

37. Shishov V, Pankratov D, Muhovatyiy O. The evaluation criteria of efficiency gearing transmission. Visnik NTU KHPI (in Russian). 2001;12:27-33. Search in Google Scholar

38. Stavitskiy V, Nosko P. Opredeleniye mekhanicheskogo kpd v zubchatom zatseplenii s uchetom usloviy ekspluatatsii. Vestnik NTU «KHPI» (in Russian). 2011;51:152-164. Search in Google Scholar

39. Stavitskiy V, Nosko P. Opredeleniye koeffitsiyenta poter’ moshchnosti vsledstviye szhatiya maslovozdushnoy smesi mezhdu zub’yami tsilindricheskikh peredach. Vísnik Skhídnoukr. nats. u-tu ím. V. Dalya (in Russian). 2011;5(2):313-318. Search in Google Scholar

40. Stavitskiy V, Nosko P. Gidrodinamicheskoye soprotivleniye v vysokoskorostnykh zubchatykh peredachakh, Progresivní tekhnologíí í sistemi mashinobuduvannya. Mízhnarodniy zb. naukovikh prats’ (in Russian). 2012;43:278-85. Search in Google Scholar

41. Stavitskiy V, Nosko P, Likhodeyev S. Analiz sostavlyayushchikh poter’ moshchnosti vsledstviye aerodinamicheskogo soprotivleniya vrashcheniyu zubchatykh koles, Progresivní tekhnologíí í sistemi mashinobuduvannya. Mízhnar. zb. naukovikh prats’ (in Russian). 2011;41:297-302. Search in Google Scholar

42. Stavitskiy V, Nosko P, Fil P. Energeticheskaya effektivnost’ vysokoskorostnyh zubchatyh peredach. Luhansk: vydavnytstvo SNU im. Dalia (in Russian); 2013. Search in Google Scholar

43. Tkach P, Nosko P, Boyko G, Bashta O, Bashta A. Design of worm gears with optimal geometric parameters based on minimization of losses in gearing. Problems of Friction and Wear. 2018;1(78):75-84.10.18372/0370-2197.1(78).12761 Search in Google Scholar

44. Tkach P, Nosko P, Bashta O, Boyko G, Tsybrii I, Gerasimova O. Gearing with increased teeth wear resistance. Problems of Friction and Wear. 2018;2(79):86-92.10.18372/0370-2197.2(79).12895 Search in Google Scholar

45. Zhuravlev G. Evaluation of the Hertz solution applicability in problems of the gears teeth contact. Mezhdunar. konf. Tehn. Mashinostroeniya (in Russian). 2001. Search in Google Scholar

46. Zhou X, Walker P, Zhang N, Zhu B, Ruan J. Study of Power Losses in a Two-Speed Dual Clutch Transmission. SAE Technical Paper Series. 2014:1799.10.4271/2014-01-1799 Search in Google Scholar