Accès libre

Identification of Analytical Dependencies of the Operational Characteristics of the Workpiece Clamping Mechanisms with the Rotary Movement of the Input Link

À propos de cet article

Citez

1. Alquraan T., Kuznetsov Yu., Tsvyd T. (2016) High-speed clamping Mechanism of the CNC lathe with compensation of centrifugal forces, Procedia engineering, 150, 689-695.10.1016/j.proeng.2016.07.081 Search in Google Scholar

2. An J., Jiamin C., Wenguo Y. (2019), Measurement of spindle radial error based on target trajectory tracking, Measurement, 146,179-185.10.1016/j.measurement.2019.05.026 Search in Google Scholar

3. Bediz B., Gozen B.A., Korkmaz E., Ozdoganlar O. B. (2014), Dynamics of ultra-high-speed (UHS) spindles used for micromachining, International Journal of Machine Tools and Manufacture, 87, 27-38.10.1016/j.ijmachtools.2014.07.007 Search in Google Scholar

4. Budniak Z. (2015), Modelling and numerical analysis of assembly system, Acta mechanica et Automatica, 9(3), 145-150.10.1515/ama-2015-0024 Search in Google Scholar

5. Chao Xu, Jianfu Z., Pingfa F. (2014), Characteristics of stiffness and contact stress distribution of a spindle-holder taper joint under clamping and centrifugal forces, International Journal of Machine Tools & Manufacture, 82-83, 21-28.10.1016/j.ijmachtools.2014.03.006 Search in Google Scholar

6. Dogariu C., Bardac D. (2014), Prediction of the structural dynamic behavior of high speed turning machine spindles, Applied Mechanics and Materials, 555, 567-574.10.4028/www.scientific.net/AMM.555.567 Search in Google Scholar

7. Estrems M., Arizmendi M., Cumbicus W.E., López A. (2015), Measurement of clamping forces in a 3 jaw chuck through an instrumented aluminium ring, Procedia Engineering, 132, 456-463.10.1016/j.proeng.2015.12.519 Search in Google Scholar

8. Fedorynenko D., Sapon S., Boyko S. (2016), Accuracy of spindle units with hydrostatic bearings, Acta Mechanica et Automatica, 10(2), 117-12410.1515/ama-2016-0019 Search in Google Scholar

9. Fedorynenko D., Sapon S., Boyko S., Urlina A. (2017), Increasing of energy efficiency of spindles with fluid bearings, Acta Mechanica et Automatica, 11(2), 204-209.10.1515/ama-2017-0031 Search in Google Scholar

10. Foremny E., Schenck C., Kuhfuß B. (2016), Dynamic Behavior of an Ultra Precision Spindle used in Machining of Optical Components, Procedia CIRP, 46, 452-455.10.1016/j.procir.2016.04.039 Search in Google Scholar

11. Grama S.N., Mathur A., Badhe A.N. (2018), A model-based cooling strategy for motorized spindle to reduce thermal errors, International Journal of Machine Tools and Manufacture, 132, 3-16.10.1016/j.ijmachtools.2018.04.004 Search in Google Scholar

12. Grossi N., Scippa A., Montevecchi F. (2016), A novel experimental-numerical approach to modeling machine tool dynamics for chatter stability prediction, Journal of advanced mechanical design systems and manufacturing, 10(2), #15-00547.10.1299/jamdsm.2016jamdsm0019 Search in Google Scholar

13. Harris P., Linke B., Spence S. (2015), An Energy Analysis of Electric and Pneumatic Ultra-high Speed Machine Tool Spindles, Procedia CIRP, 29, 239-244.10.1016/j.procir.2015.02.046 Search in Google Scholar

14. Jia Q., Li B., Wei Y., Chen Y., Yuan X. (2016), Axiomatic Design Method for the Hydrostatic Spindle with Multisource Coupled Information, Procedia CIRP, 53, 252-260.10.1016/j.procir.2016.07.013 Search in Google Scholar

15. Kono D., Mizuno S., Muraki T., Nakaminami M. (2019), A machine tool motorized spindle with hybrid structure of steel and carbon fiber composite, CIRP Annals, 68(1), 389-392.10.1016/j.cirp.2019.04.022 Search in Google Scholar

16. Li, W.; Zhou, Z. X.; Xiao, H. (2015), Design and evaluation of a high-speed and precision microspindle, International journal of advanced manufacturing technology, 78(5), 997-1004.10.1007/s00170-014-6690-x Search in Google Scholar

17. Liu T., Gao W., Zhang D., Tian Y. (2017), Analytical modeling for thermal errors of motorized spindle unit, International Journal of Machine Tools and Manufacture, 112, 53-70.10.1016/j.ijmachtools.2016.09.008 Search in Google Scholar

18. Longfei Z., Jun Z., Chao Z. (2019), A new method for field dynamic balancing of rigid motorized spindles based on real-time position data of CNC machine tools, International journal of advanced manufacturing technology, 102 (5-8), special edition, 1181-1191.10.1007/s00170-018-2953-2 Search in Google Scholar

19. Matsubara A., Tsujimoto S., Kono D. (2015), Evaluation of dynamic stiffness of machine tool spindle by non-contact excitation tests, CIRP Annals, 1.V. 64(1), 365-368. Search in Google Scholar

20. Mori K., Bergmann B., Kono D., Denkena B., Matsubara A. (2019), Energy efficiency improvement of machine tool spindle cooling system with on–off control, CIRP Journal of Manufacturing Science and Technology, 25, 14-21.10.1016/j.cirpj.2019.04.003 Search in Google Scholar

21. Postel M., Aslan D., Wegener K., Altintas Y. (2019), Monitoring of vibrations and cutting forces with spindle mounted vibration sensors, CIRP Annals, 68(1), 413-416.10.1016/j.cirp.2019.03.019 Search in Google Scholar

22. Prydalnyi B. (2020), Characteristics of electromechanical clamping mechanism with asynchronous electric motor, International Conference Mechatronic Systems and Materials (MSM), 1-5.10.1109/MSM49833.2020.9202186 Search in Google Scholar

23. Rabréau C., Ritou M., Le Loch S., Furet B. (2017), Investigation of the Evolution of Modal Behavior of HSM Spindle at High Speed, Procedia CIRP, 58, 405-410.10.1016/j.procir.2017.03.243 Search in Google Scholar

24. Ritou M., Rabréau C., Le Loch S., Furet B., Dumur D. (2018), Influence of spindle condition on the dynamic behavior, CIRP Annals, 67(1), 419-422.10.1016/j.cirp.2018.03.007 Search in Google Scholar

25. Shaoke W., Jun H., Fei D. (2019), Modelling and characteristic investigation of spindle-holder assembly under clamping and centrifugal forces, Journal of mechanical science and technology, 33(5), 2397-2405.10.1007/s12206-019-0438-3 Search in Google Scholar

26. Thorenz B., Westermann H.-H., Kafara M., Nützel M., Steinhilper R. (2018), Evaluation of the influence of different clamping chuck types on energy consumption, tool wear and surface qualities in milling operations, Procedia Manufacturing, 21, 575-582.10.1016/j.promfg.2018.02.158 Search in Google Scholar

27. Wang H.J. (2013), Study of dynamics characteristics for precision motor spindle system, Advanced materials research, 819, 389-392.10.4028/www.scientific.net/AMR.819.389 Search in Google Scholar

28. Xu C., Zhang J., Feng P., Yu D., Wu Z. (2014), Characteristics of stiffness and contact stress distribution of a spindle–holder taper joint under clamping and centrifugal forces, International Journal of Machine Tools and Manufacture, 82–83, 21-28.10.1016/j.ijmachtools.2014.03.006 Search in Google Scholar

29. Yadav M.H., Mohite S.S. (2018), Controlling deformations of thin-walled Al 6061-T6 components by adaptive clamping, Procedia Manufacturing, 20, 509-516.10.1016/j.promfg.2018.02.076 Search in Google Scholar

30. Yang Y., Zhang W.H., Ma Y.C., Wan M. (2015), Generalized method for the analysis of bending, torsional and axial receptances of tool–holder–spindle assembly, International Journal of Machine Tools and Manufacture, 99, 48-67.10.1016/j.ijmachtools.2015.08.004 Search in Google Scholar

31. Yuan S.M. (2014), The analysis of static and dynamic characteristics of motorized high-speed spindle based on sensitivity analysis of fem model, Applied mechanics and materials, 43, 376-381.10.4028/www.scientific.net/AMM.43.376 Search in Google Scholar

32. Zabielski R., Trochimczuk R. (2011), Wybrane problemy projektowania wysokoobrotowych elektrowrzecion frezarskich o niestandardowym łożyskowaniu, Acta Mechanica et Automatica, 5(1), 131-136. Search in Google Scholar

33. Zhang S., Yu J., To S., Xiong Z. (2018), A theoretical and experimental study of spindle imbalance induced forced vibration and its effect on surface generation in diamond turning, International Journal of Machine Tools and Manufacture, 133, 61-71.10.1016/j.ijmachtools.2018.06.002 Search in Google Scholar