Accès libre

A Neural-Fuzzy Approach for Fault Diagnosis of Hybrid Dynamical Systems: Demonstration on Three-Tank System

À propos de cet article

Citez

1. Abdallah I., Gehin A.-L., Bouamama B. O. (2016), Event driven hybrid bond graph for diagnosis, 2016 European Control Conference (ECC), 2353–2358.10.1109/ECC.2016.7810642 Search in Google Scholar

2. Abid A., Khan M.T., Lang H., de Silva C.W. (2019), Adaptive system identification and severity index-based fault diagnosis in motors, IEEE/ASME Transactions on Mechatronics, 24(4), 1628–1639.10.1109/TMECH.2019.2917749 Search in Google Scholar

3. Achbi M.S., Kechida S. (2017), Hybrid dynamic systems fault diagnosis approach based on hybrid automata and ANFIS, The 2 Nd International Conference on Applied Automation and Industrial Diagnostics, ICAAID2017. Search in Google Scholar

4. Achbi M.S., Kechida S. (2017a), Fault diagnosis of a reverse osmosis water desalination plant through a hybrid approach, ICENT2017. Search in Google Scholar

5. Achbi M.S., Kechida S. (2017b), Fault tolerant control of Reverse Osmosis Desalination Plant with the application of SCADA system, The 2nd International Conference on Applied Automation and Industrial Diagnostics, ICAAID2017. Search in Google Scholar

6. Achbi M.S., Kechida S. (2020), Methodology for monitoring and diagnosing faults of hybrid dynamic systems: A case study on a desalination plant, Diagnostyka, 21(1), 1641–6414.10.29354/diag/116076 Search in Google Scholar

7. Achbi M.S., Mhamdi L., Kechida S., Dhouibi H. (2020), Methodology to knowledge discovery for fault diagnosis of hybrid dynamical systems: demonstration on two tanks system, Diagnostyka, 21.10.29354/diag/130617 Search in Google Scholar

8. Alur R., Courcoubetis C., Henzinger T.A., Ho P.-H. (1992), Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems, Hybrid systems, 209–229, Springer.10.1007/3-540-57318-6_30 Search in Google Scholar

9. Antsaklis P., Koutsoukos X. (1997), On hybrid control of complex systems: A survey, ISIS, 97, 017. Search in Google Scholar

10. Asma T., Islem L., Zanzouri N., Ksouri M. (2015), Robust diagnosis for hybrid dynamical systems, 2015 IEEE 12th International Multi-Conference on Systems, Signals Devices (SSD15), 1–6.10.1109/SSD.2015.7348222 Search in Google Scholar

11. Belkacem L., Mhamdi L., Simeu-Abazi Z., Messaoud H., Gascard E. (2016), Diagnosis of Hybrid Dynamical Systems through Hybrid Automata, IFAC-PapersOnLine, 49(12), 990–995.10.1016/j.ifacol.2016.07.571 Search in Google Scholar

12. Belkhiat D E.C., Manamanni N., Messai N., Djemai M. (2012), Fault detection isolation for a class of hybrid systems: A dedicated switched robust observer scheme, 2012 20th Mediterranean Conference on Control Automation (MED), 984–989.10.1109/MED.2012.6265766 Search in Google Scholar

13. Belkhiat D.E.C., Messai N., Manamanni N. (2011), Design of a robust fault detection based observer for linear switched systems with external disturbances, Nonlinear Analysis: Hybrid Systems, 5(2), 206–219.10.1016/j.nahs.2010.10.009 Search in Google Scholar

14. Branicky M. S. (1995), Studies in hybrid systems: Modeling, analysis, and control, Massachusetts Inst Of Tech Cambridge Lab For Information And Decision Systems. Search in Google Scholar

15. Chanthery E., Pencolé Y., Ribot P., Travé-Massuyès L. (2015), HYDIAG: Extended diagnosis and prognosis for hybrid systems. Search in Google Scholar

16. Chanthery E., Sztyber A., Travé-Massuyès L., Pérez-Zuñiga C.G. (2020), Process decomposition and test selection for distributed fault diagnosis, International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 914-925, Springer, Cham.10.1007/978-3-030-55789-8_78 Search in Google Scholar

17. Cocquempot V., El Mezyani T., Staroswiecki M. (2004), Fault detection and isolation for hybrid systems using structured parity residuals, 2004 5th Asian Control Conference (IEEE Cat. No. 04EX904), 2, 1204–1212. Search in Google Scholar

18. Daher A. (2018), Default diagnosis and prognosis for a preventive and predictive maintenance, Application to a distillation column [PhD Thesis]. Search in Google Scholar

19. Deng Y., D’Innocenzo, A., Julius A.A. (2015), Trajectory-based observer for hybrid automata fault diagnosis, 2015 54th IEEE Conference on Decision and Control (CDC), 942–947.10.1109/CDC.2015.7401994 Search in Google Scholar

20. Derbel H. (2009), Diagnostic à base de modèles des systèmes temporisés et d’une sous-classe de systèmes dynamiques hybrides [PhD Thesis]. Search in Google Scholar

21. Ekanayake T., Dewasurendra D., Abeyratne S., Ma L., Yarlagadda P. (2019), Model-based fault diagnosis and prognosis of dynamic systems: A review, Procedia Manufacturing, 30, 435–442.10.1016/j.promfg.2019.02.060 Search in Google Scholar

22. Favela Contreras A. (1999), Modélisation et analyse du comportement dynamique des systèmes hybrides: Une approche basée sur le modèle d’automate hybride [PhD Thesis], Grenoble INPG. Search in Google Scholar

23. Gara H., Saad K.B. (2020), Fault diagnosis for hybrid systems based on a bank of linear observers and a discrete automaton, SN Applied Sciences, 2(11), 1-9.10.1007/s42452-020-03564-7 Search in Google Scholar

24. Guo D., Zhong M., Ji H., Liu Y., Yang R. (2018), A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors, Neurocomputing, 319, 155-163.10.1016/j.neucom.2018.08.046 Search in Google Scholar

25. Jang J.-S. (1992), Neuro-fuzzy modeling: Architectures, analyses, and applications, University of California, Berkeley. Search in Google Scholar

26. Karsai G., Abdelwahed, S., Biswas, G. (2003), Integrated diagnosis and control for hybrid dynamic systems, AIAA Guidance, Navigation, and Control Conference and Exhibit, 5673.10.2514/6.2003-5673 Search in Google Scholar

27. Kechida S. (2007), Synthèse des générateurs de résidus robustes pour la détection de défauts [PhD Thesis], Université de Annaba-Badji Mokhtar. Search in Google Scholar

28. Mahmoud M.S. (2018), Fuzzy control, estimation and diagnosis, Saudi Arabia: Springer International.10.1007/978-3-319-54954-5 Search in Google Scholar

29. Mhamdi L., Achbi M. S., Dhouibi H., Kechida S. (2020), Diagnosis of hybrid systems through bond graph, observers and timed automata, Diagnostyka, 21.10.29354/diag/126444 Search in Google Scholar

30. MI Rahal B. (2018), Modeling and robust fault diagnosis of hybrid system based on hybrid bond graph approach, Int Rob Auto J, 4(4), 266–272.10.15406/iratj.2018.04.00135 Search in Google Scholar

31. Olivier-Maget N., Hétreux G., Le Lann J.-M., Le Lann M.-V. (2008), Fault detection and isolation based on the model-based approach: Application on chemical processes, Computer Aided Chemical Engineering, 25, 411–416, Elsevier.10.1016/S1570-7946(08)80073-9 Search in Google Scholar

32. Patel H.R., Raval S.K., Shah V.A. (2021), A novel design of optimal intelligent fuzzy TID controller employing GA for nonlinear level control problem subject to actuator and system component fault, International Journal of Intelligent Computing and Cybernetics.10.1108/IJICC-11-2020-0174 Search in Google Scholar

33. Pérez-Zuñiga G., Rivas-Perez R., Sotomayor-Moriano J., Sánchez-Zurita V. (2020), Fault Detection and Isolation System Based on Structural Analysis of an Industrial Seawater Reverse Osmosis Desalination Plant, Processes, 8(9), 1100.10.3390/pr8091100 Search in Google Scholar

34. Pisano A., Rapaić M. R., Usai E. (2014), Discontinuous dynamical systems for fault detection, A unified approach including fractional and integer order dynamics, Mathematics and Computers in Simulation, 95, 111–125.10.1016/j.matcom.2012.09.007 Search in Google Scholar

35. Pislaru M., Trandabat A.F., Schreiner C. (2006), Neuro-fuzzy surveillance for industrial process fault detection. Search in Google Scholar

36. Rivas-Perez R., Sotomayor-Moriano J., Pérez-Zuñiga G., Soto-Angles M.E. (2019), Real-time implementation of an expert model predictive controller in a pilot-scale reverse osmosis plant for brackish and seawater desalination, Applied Sciences, 9(14), 2932.10.3390/app9142932 Search in Google Scholar

37. Sadhukhan C., Mitra S.K., Naskar M.K., Sharifpur M. (2021), Fault diagnosis of a nonlinear hybrid system using adaptive unscented Kalman filter bank, Engineering with Computers, 1-12.10.1007/s00366-020-01235-0 Search in Google Scholar

38. Sayed-Mouchaweh M. (2018), Fault diagnosis of hybrid dynamic and complex systems, Springer.10.1007/978-3-319-74014-0 Search in Google Scholar

39. Sengupta S., Mukhopadhyay S., Deb A., Pattada K., De S. (2012), Hybrid automata modeling of SI gasoline engines towards state estimation for fault diagnosis, SAE International Journal of Engines, 5(3), 759–781.10.4271/2011-01-2434 Search in Google Scholar

40. Subbaraj P., Kannapiran B. (2011), Adaptive neuro-fuzzy inference system approach for fault detection and diagnosis of pneumatic valve in cement industry, International Journal of Computational Intelligence and Applications, 10(04), 399–423.10.1142/S1469026811003161 Search in Google Scholar

41. Sun S., Cui Z., Zhang X., Tian W. (2020), A hybrid inverse problem approach to model-based fault diagnosis of a distillation column, Processes, 8(1), 55.10.3390/pr8010055 Search in Google Scholar

42. Tabatabaeipour S., Ravn A.P., Izadi-zamabadi R., Bak T. (2009), Active diagnosis of hybrid systems—A model predictive approach, 2009 IEEE International Conference on Control and Automation, 465–470.10.1109/ICCA.2009.5410420 Search in Google Scholar

43. Tsuda K., Mignone D., Ferrari-Trecate G., Morari M. (2001), Reconfiguration strategies for hybrid systems, Proceedings of the 2001 American Control Conference (Cat. No. 01CH37148), 2, 868–873. Search in Google Scholar

44. Uppal F. J., Patton R. J., Palade V. (2002), Neuro-fuzzy based fault diagnosis applied to an electro-pneumatic valve, IFAC Proceedings Volumes, 35(1), 477–482.10.3182/20020721-6-ES-1901.01633 Search in Google Scholar

45. Van Gorp J. (2013), Diagnostic et observation d’une classe de systèmes dynamiques hybrids, Application au convertisseur multicellulaire série [PhD Thesis]. Search in Google Scholar

46. Vento Maldonado J., Travé-Massuyès L., Sarrate Estruch R., Puig Cayuela V. (2013), Hybrid automaton incremental construction for online diagnosis, Proceedings DX’13, 186–191. Search in Google Scholar

47. Viharos Z. J., Kis K. B. (2015), Survey on neuro-fuzzy systems and their applications in technical diagnostics and measurement, Measurement, 67, 126–136.10.1016/j.measurement.2015.02.001 Search in Google Scholar

48. Zhirabok A., Shumsky A. (2018), Fault diagnosis in nonlinear hybrid systems, International Journal of Applied Mathematics and Computer Science, 28(4), 635–648.10.2478/amcs-2018-0049 Search in Google Scholar

49. Zouaghi L., Alexopoulos A., Wagner A., Badreddin E. (2011), Modified particle petri nets for hybrid dynamical systems monitoring under environmental uncertainties, 2011 IEEE/SICE International Symposium on System Integration (SII), 497–502.10.1109/SII.2011.6147499 Search in Google Scholar