1. bookVolume 14 (2020): Edition 2 (June 2020)
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Fractional Vector-Order h-Realisation of the Impulse Response Function

Publié en ligne: 24 Jul 2020
Volume & Edition: Volume 14 (2020) - Edition 2 (June 2020)
Pages: 108 - 113
Reçu: 12 Mar 2020
Accepté: 03 Jul 2020
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais

1. Ambroziak L., Lewon D., Pawluszewicz E. (2016), The use of fractional order operators in modeling of RC-electrical systems, Control & Cybernetics, 45(3), 275-288Search in Google Scholar

2. Bartosiewicz Z., Pawluszewicz E. (2006), Realizations of linear control systems on time scales, Control and Cybernetics, 35(4), 769-786.Search in Google Scholar

3. Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M. (2011), Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete and Continuous Dynamical Systems, Vol.29(2), 417-437.Search in Google Scholar

4. Bettayeb M., Djennoune S., Guermah S., Ghanes M. (2008), Structural properties of linear discrete-time fractional order systems, Proc. of the 17th World Congres The Federation of Automatic Control, Seoul, Korea, 15262—15266.Search in Google Scholar

5. Das S. (2008), Functonal Fractional Calculus for System Identyfication and Controls, Springer.Search in Google Scholar

6. Ferreira, R.A.C., Torres, D.F.M. (2011) Fractional h–difference equations arising from the calculus of variations, Applicable Analysis and Discrete Mathematics, 5(1), 110-121.10.2298/AADM110131002FSearch in Google Scholar

7. Gantmacher F.R. (1959), The Theory of Matrices, Chelsea Pub. Comp., London.Search in Google Scholar

8. Kaczorek T. (1998), Vectors and Matrices in Automation and Electrotechnics, WNT Warsaw 1998 (in Polish).Search in Google Scholar

9. Kaczorek T. (2017), Cayley-Hamilton theorem for fractional linear systems, Theory and Applications of Non-integer Order Systems, LNEE 407, 45-55, Springer.10.1007/978-3-319-45474-0_5Search in Google Scholar

10. Koszewnik A., Nartowicz t., Pawluszewicz E. (2016), Fractional order controller to control pump in FESTO MPS® PA Compact Workstation, Proc. of the Int.Carpathian Control Conference, 364-367.Search in Google Scholar

11. Mozyrska D., Girejko E. (2013), Overview of the fractional h–differences operator, in: Almeida A., Castro L., Speck FO. (eds) Advances in Harmonic Analysis and Operator Theory, Operator Theory: Advances and Applications, 229, Birkhäuser, Basel.10.1007/978-3-0348-0516-2_14Search in Google Scholar

12. Mozyrska D., Girejko E., Wyrwas M. (2013), Comparision of h –difference fractional operatots, Theory and Appication of Non-integer Order systems, LNEE 257, 191-197, Springer.10.1007/978-3-319-00933-9_17Search in Google Scholar

13. Mozyrska D., Wyrwas M., Pawluszewicz E. (2017), Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisation, International Journal of Systems Science, 48(4), 788-79410.1080/00207721.2016.1216197Search in Google Scholar

14. Mozyrska, D., Wyrwas, M. (2015), The Z-Transform Method and Delta Type Fractional Difference Operators, Discrete Dynamics in Nature and Society, Article ID 852734, 12 pages10.1155/2015/852734Search in Google Scholar

15. Oprzędkiewicz K., Gawin E. (2016), A non integer order, state space model for one dimensional heat transfer process, Archives of Control Sciences, 26(2), 261-27510.1515/acsc-2016-0015Search in Google Scholar

16. Pawluszewicz E., Koszewnik A. (2019), Markov parameters of the input-output map for discrete-time fractional order systems, Proc. of the 24th Int.Conf. on Methods and Models in Automation and Robotics MMAR’2019, Miedzyzdroje, Poland10.1109/MMAR.2019.8864668Search in Google Scholar

17. Podlubny I. (1999), Fractional differential systems, Academic Press, San DiegoSearch in Google Scholar

18. Sierociuk D., Dzieliński A., Sarwas G., Petras I., Podlubny I., Skovranek T. (2013), Modelling heat transfer in heterogenous media using fractional calculus, Phylosophical Transaction of the Royal Society A-Mathematical, Physical and Engineering Sciences, Soc A 371: 20120146, 10 pages10.1098/rsta.2012.014623547224Search in Google Scholar

19. Sontag E. (1998), Mathematical Control Theory, Springer – Verlag10.1007/978-1-4612-0577-7Search in Google Scholar

20. Wu G.Ch., Baleanu D., Zeng S.D., Luo W.H. (2016), Mittag-Leffler function for discrete fractional modelling, Journal of King Saud University - Science, 28, 99—10210.1016/j.jksus.2015.06.004Search in Google Scholar

21. Wu, D.Baleanu, Zeng S.D., Deng Z.G. (2015), Discrete fractional diffusion equation, Nonlinear Dynamics, 80, 281–28610.1007/s11071-014-1867-2Search in Google Scholar

22. Zabczyk J. (2008), Mathematical Control Theory, Birkhaüser.10.1007/978-0-8176-4733-9Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo