1. bookVolume 14 (2020): Edition 2 (June 2020)
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Temperature-Dependent Fatigue Characteristics of P91 Steel

Publié en ligne: 24 Jul 2020
Volume & Edition: Volume 14 (2020) - Edition 2 (June 2020)
Pages: 69 - 78
Reçu: 17 Jun 2019
Accepté: 15 May 2020
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais

1. Besson J., Cailletaud G., Chaboche S. (2009), Non-linear mechanics of materials, Springer.10.1007/978-90-481-3356-7Search in Google Scholar

2. Cailletaud G., Depoid C., Massinon D., Nicouleau-Bourles E. (2000), Elastoviscoplasticity with ageing in aluminium alloys, [In:] Continuum Thermomechanics: The Art and Science of Modelling Material Behaviour (Paul Germain’s Anniversary Volume), Solid Mechanics and Its Applications, Kluwer Academic Publishers, 75–86.10.1007/0-306-46946-4_5Search in Google Scholar

3. Cailletaud G., Saï K. (1995), Study of plastic/viscoplastic models with various inelastic mechanisms, International Journal of Plasticity, 11, 991–1005.10.1016/S0749-6419(95)00040-2Search in Google Scholar

4. Chaboche J.L. (2008), A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24(10), 1642-1693.10.1016/j.ijplas.2008.03.009Search in Google Scholar

5. Dassault. (2016), SIMULIA Abaqus Extended Products, Abaqus 6.14 - AP Isight 5.9. http://www.3ds.com/products/simuliaSearch in Google Scholar

6. Duda P. (2015), Solution of an inverse axisymmetric heat conduction problem in complicated geometry. International Journal of Heat and Mass Transfer, 419–428.10.1016/j.ijheatmasstransfer.2014.11.002Search in Google Scholar

7. Egner H. (2012), On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials, International Journal of Solids and Structures, 49(2), 279–288.10.1016/j.ijsolstr.2011.10.014Search in Google Scholar

8. Egner H., Egner W. (2014), Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermo-viscoplastic coupling, International Journal of Plasticity, 57, 77–91.10.1016/j.ijplas.2014.03.002Search in Google Scholar

9. Egner H., Ryś M. (2017), Total energy equivalence in constitutive modeling of multidissipative materials, International Journal of Damage Mechanics, 26(3),, 417–446.10.1177/1056789516679496Search in Google Scholar

10. Egner W., Egner H. (2016), Thermo-mechanical coupling in constitutive modeling of dissipative materials, International Journal of Solids and Structures, 91, 78–88.10.1016/j.ijsolstr.2016.04.024Search in Google Scholar

11. Farragher T.F. (2014), Thermomechanical Analysis of P91 Power Plant Components, PhD Thesis, National University of Ireland Galway, https://aran.library.nuigalway.ie/xmlui/handle/10379/4161.Search in Google Scholar

12. Fournier B., Salvi M., Dalle F., De Carlan Y., Caës C., Sauzay M., Pineau A. (2010), Lifetime prediction of 9-12%Cr martensitic steels subjected to creep-fatigue at high temperature, International Journal of Fatigue, 32(6), 971–978.10.1016/j.ijfatigue.2009.10.017Search in Google Scholar

13. Fournier B., Sauzay M., Caës C., Noblecourt M., Mottot M., Bougault A., Rabeau V., Man J., Gillia O., Lemoine P., Pineau A. (2008), Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part III: Lifetime prediction, International Journal of Fatigue, 30(10–11), 1797–1812.Search in Google Scholar

14. Frederick C.O., Armstrong P.J. (2007), A mathematical representation of the multiaxial Bauschinger effect, Materials at High Temperatures, 24(1), 1–26.10.3184/096034007X207589Search in Google Scholar

15. Jones W.B., Van Den Avyle J.A. (1980), Substructure and strengthening mechanisms in 2.25 Cr-1 Mo steel at elevated temperatures, Metallurgical Transactions, A 11A, 1275–1286.Search in Google Scholar

16. Kannan R., Sankar V., Sandhya R., Mathew M.D. (2013), Comparative evaluation of the low cycle fatigue behaviours of P91 and P92 steels, Procedia Engineering, 55, 149–153.10.1016/j.proeng.2013.03.234Search in Google Scholar

17. Kim S., Weertman J.R. (1988), Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue, Metallurgical Transactions, A 19A, 999–1007.10.1007/BF02628384Search in Google Scholar

18. Kruml T., Polák J. (2001), Fatigue softening of X10CrAl24 ferritic steel, Materials Science and Engineering, A 319, 564–568.10.1016/S0921-5093(01)01004-8Search in Google Scholar

19. Kyaw S.T., Rouse J.P., Lu J., Sun W. (2016), Determination of material parameters for a unified viscoplasticity-damage model for a P91 power plant steel, International Journal of Mechanical Sciences, 115–116, 168–179.10.1016/j.ijmecsci.2016.06.014Search in Google Scholar

20. Li M., Barrett R.A., Scully S., Harrison N.M., Leen S.B., O’Donoghue P.E. (2016), Cyclic plasticity of welded P91 material for simple and complex power plant connections, International Journal of Fatigue, 87, 391–404.10.1016/j.ijfatigue.2016.02.005Search in Google Scholar

21. Lu J., Sun W., Becker A., Saad A.A. (2015), Simulation of the fatigue behaviour of a power plant steel with a damage variable,. International Journal of Mechanical Sciences, 100, 145–157.10.1016/j.ijmecsci.2015.06.019Search in Google Scholar

22. Mroziński S. (2011), The influence of loading program on the course of fatigue damage cumulation, Journal of Theoretical and Applied Mechanics, 49(1), 83–95.Search in Google Scholar

23. Mroziński S., Golański G. (2014), Influence of temperature change on fatigue properties of P91 steel, Materials Research Innovations, 18 (2), 504–508.10.1179/1432891714Z.000000000546Search in Google Scholar

24. Nagesha A., Valsan M., Kannan R., Bhanu Sankara Rao K., Mannan S.L. (2002), Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr-1Mo ferritic steel, International Journal of Fatigue, 1285–1293.10.1016/S0142-1123(02)00035-XSearch in Google Scholar

25. Korelc J. (2016), AceGen 6.824 Windows.Search in Google Scholar

26. Saad A.A., Hyde T.H., Sun W., Hyde C.J., Tanner D.W.J. (2013), Characterization of viscoplasticity behaviour of P91 and P92 power plant steels, International Journal of Pressure Vessels and Piping, 111–112, 246–252.10.1016/j.ijpvp.2013.08.001Search in Google Scholar

27. Saad A.A., Sun W., Hyde T.H., Tanner D.W.J. (2011), Cyclic softening behaviour of a P91 steel under low cycle fatigue at high temperature, Procedia Engineering, 1103–1108.10.1016/j.proeng.2011.04.182Search in Google Scholar

28. Saanouni K., Devalan P. (2012), Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation, Wiley.10.1002/9781118562192Search in Google Scholar

29. Sauzay M., Brillet H., Monnet I., Mottot M., Barcelo F., Fournier B., Pineau A. (2005), Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel, Materials Science and Engineering A, 400–401(1-2), 241–244.10.1016/j.msea.2005.02.092Search in Google Scholar

30. Shankar V., Valsan M., Rao K.B.S., Kannan R., Mannan S.L., Pathak S.D. (2006), Low cycle fatigue behavior and microstructural evolution of modified 9Cr-1Mo ferritic steel, Materials Science and Engineering A, 437, 413–422.10.1016/j.msea.2006.07.146Search in Google Scholar

31. Skrzypek J.J., Kuna-Ciskał H. (2003), Anisotropic Elastic-Brittle-Damage and Fracture Models Based on Irreversible Thermodynamics, Lecture Notes in Applied and Computational Mechanics, 9, 143–184.10.1007/978-3-540-36418-4_5Search in Google Scholar

32. Sulich P., Egner W., Mroziński S., Egner H. (2017), Modeling of cyclic thermo-elastic-plastic behaviour of P91 steel, Journal of Theoretical and Applied Mechanics, 55(2), 595–606.10.15632/jtam-pl.55.2.595Search in Google Scholar

33. Taleb L., Cailletaud G. (2010), An updated version of the multimechanism model for cyclic plasticity, International Journal of Plasticity, 26(6), 859–874.10.1016/j.ijplas.2009.11.002Search in Google Scholar

34. Wolfram Mathematica 11.2. (2017), http://www.wolfram.com/mathematica/new-in-11/Search in Google Scholar

35. Xie X., Jiang W., Chen J., Zhang X., Tu S.-T. (2019), Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling, International Journal of Plasticity, 114, 196-214.10.1016/j.ijplas.2018.11.001Search in Google Scholar

36. Zhang Z., Delagnes D., Bernhart G. (2002), Anisothermal cyclic plasticity modelling of martensitic steels, International Journal of Fatigue, 24(6), 635–648.10.1016/S0142-1123(01)00182-7Search in Google Scholar

37. Zhao P., Xuan F. Z., Wu D.L. (2017), Cyclic softening behaviors of modified 9–12%Cr steel under different loading modes: Role of loading levels, International Journal of Mechanical Sciences, 131–132, 278–285.10.1016/j.ijmecsci.2017.07.001Search in Google Scholar

38. Zhou J., Sun Z., Kanouté P., Retraint, D. (2018), Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime, International Journal of Plasticity, 107, 54–78.10.1016/j.ijplas.2018.03.013Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo