Accès libre

Degradation of Functional Properties of Pseudoelastic NiTi Alloy Under Cyclic Loading: An Experimental Study

À propos de cet article

Citez

1. Abeyaratne R., Kim S.-J. (1997), Cyclic effects in shape-memory alloys: a one-dimensional continuum model, International Journal of Solids and Structures, 34(25), 3273-3289.10.1016/S0020-7683(96)00213-2Search in Google Scholar

2. Auricchio F., Boatti E., Conti M. (2015), SMA Biomedical Applications, Shape Memory Alloy Engineering, Chapter 11, 307-341.10.1016/B978-0-08-099920-3.00011-5Search in Google Scholar

3. Auricchio F., Marfia S., Sacco E. (2003), Modelling of SMA materials: training and two way memory effect, Computers & Structures, 81, 2301-2317.10.1016/S0045-7949(03)00319-5Search in Google Scholar

4. ASTM F2516-14 (2014), Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials.Search in Google Scholar

5. Chen Q., Thouas G.A. (2015), Metallic implant biomaterials, Materials Science and Engineering: R: Reports, 87, 1-57.10.1016/j.mser.2014.10.001Search in Google Scholar

6. Cheung G.S.P., Darvell B.W. (2007), Fatigue testing of a NiTi rotary instrument. Part 1: strain-life relationship, International Endodontic Journal, 40(8), 612-618.10.1111/j.1365-2591.2007.01262.xSearch in Google Scholar

7. Eggeler G., Hornbogen E., Yawny A., Heckmann A., Wagner M. (2004), Structural and functional fatigue of NiTi shape memory alloys, Materials Science and Engineering: A, 378(1-2), 24-33.10.1016/j.msea.2003.10.327Search in Google Scholar

8. Gamaoun F., Skhiri I., Bouraoui T., Ben Zineb T. (2014), Hydrogen effect on the austenite–martensite transformation of the cycled Ni–Ti alloy, Journal of Intelligent Materials Systems and Structures, 25(8), 980-988.10.1177/1045389X13502868Search in Google Scholar

9. Hsu W.N., Polatidis E., Šmíd M., Van Petegem S., Casati N., Van Swygenhoven H. (2019), Deformation and degradation of superelastic NiTi under multiaxial loading, Acta Materialia, 167, 149-158.10.1016/j.actamat.2019.01.047Search in Google Scholar

10. Iasnii V., Junga R. (2018), Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory, Materials Science, 54(3), 406-411.10.1007/s11003-018-0199-7Search in Google Scholar

11. Iasnii V., Nykyforchyn H., Tsyrulnyk O., Student O. (2019), Specific features of deformation of the nitinol alloy after electrolytic hydrogenation, Materials Science, 54(4), 582-588.10.1007/s11003-019-00221-2Search in Google Scholar

12. Iasnii V., Yasniy P., Lapusta Y., Shnitsar T. (2018), Experimental study of pseudoelastic NiTi alloy under cyclic loading, Scientific Journal of TNTU, 92(4), 7-12.10.33108/visnyk_tntu2018.04.007Search in Google Scholar

13. Isalgue A., Lovey F., Terriault P., Martorell F., Torra R., Torra V. (2006), SMA for Dampers in Civil Engineering, Materials Transactions, 47(3), 682–690.10.2320/matertrans.47.682Search in Google Scholar

14. Kan Q., Yu C., Kang G., Li J., Yan W. (2016), Experimental observations on rate-dependent cyclic deformation of superelastic NiTi shape memory alloy, Mechanics of Materials, 97, 48-58.10.1016/j.mechmat.2016.02.011Search in Google Scholar

15. Kang G., Kan Q., Yu C., Song D., Liu Y. (2012), Whole-life transformation ratchetting and fatigue of super-elastic NiTi Alloy under uniaxial stress-controlled cyclic loading, Materials Science and Engineering: A, 535(15), 228-234.10.1016/j.msea.2011.12.071Search in Google Scholar

16. Matsui R., Tobushi Y., Furuichi Y., Horikawa H. (2004), Tensile Deformation and Rotating-Bending Fatigue Properties of a Highelastic Thin Wire, a Superelastic Thin Wire, and a Superelastic Thin Tube of NiTi Alloys, Journal of Engineering Materials and Technology, 126(4), 384.10.1115/1.1789952Search in Google Scholar

17. Menna C., Auricchio F., Asprone D. (2015), Shape Memory Alloy Engineering, Elsevier.Search in Google Scholar

18. Mohd J., Leary M., Subic A., Gibson M. (2014), A review of shape memory alloy research, applications and opportunities, Materials & Design, 56, 1078-1113.10.1016/j.matdes.2013.11.084Search in Google Scholar

19. Morgan N.B. (2004) Medical shape memory alloy applications - the market and its products, Materials Science and Engineering: A, 378(1-2), 16-23.10.1016/j.msea.2003.10.326Search in Google Scholar

20. Moumni Z., Zaki W., Maitournam H. (2009), Cyclic Behavior and Energy Approach to the Fatigue of Shape Memory Alloys, Journal of Mechanics of Materials and Structures, 4(2), 395-411.10.2140/jomms.2009.4.395Search in Google Scholar

21. Nespoli A., Besseghini S., Pittaccio S., Villa E., Viscuso S. (2010), The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators. Sensors and Actuators A: Physical, 158, 149-160.10.1016/j.sna.2009.12.020Search in Google Scholar

22. Ozbulut O.E., Hurlebaus S., Desroches R. (2011), Seismic response control using shape memory alloys: A review, Journal of Intelligent Material Systems and Structures, 22(14), 1531-1549.10.1177/1045389X11411220Search in Google Scholar

23. Pan Q., Cho C. (2008), Damping property of shape memory alloys, The 17th International Metallurgical and Materials Conference METAL, 1-5.Search in Google Scholar

24. Piedboeuf M.C., Gauvin R. (1998), Damping behaviour of shape memory alloys: strain amplitude, frequency and temperature effects, Journal of Sound and Vibration, 214(5), 885-901.10.1006/jsvi.1998.1578Search in Google Scholar

25. Predki W., Klönne M., Knopik A. (2006), Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure, Materials Science and Engineering: A, 417(1-2), 182-189.10.1016/j.msea.2005.10.037Search in Google Scholar

26. Qiu C., Zhu S. (2017), Shake table test and numerical study of self-centering steel frame with SMA braces, Earthquake Engineering & Structural Dynamics, 46(1), 117-137.10.1002/eqe.2777Search in Google Scholar

27. Shen Y., Qian W., Abtin H., Gao Y., Haapasalo M. (2012), Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments, Journal of Endodontics, 38(3), 376-380.10.1016/j.joen.2011.12.002Search in Google Scholar

28. Sun L., Huang W.M., Ding Z., Zhao Y., Wang C.C., Purnawali H., Tang C. (2012), Stimulus-responsive shape memory materials: A review, Materials & Design, 33, 577-640.10.1016/j.matdes.2011.04.065Search in Google Scholar

29. Tanaka K., Nishimura F., Hayashi T., Tobushi H., Lexcellent C. (1995), Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads, Mechanics of Materials, 19(4), 281-292.10.1016/0167-6636(94)00038-ISearch in Google Scholar

30. Tobushi H., Nakahara T., Shimeno Y., Hashimoto T. (1999), Low cycle fatigue of TiNi shape memory alloy and formulation of fatigue life, Journal of Engineering Materials and Technology, 122(2), 186-191.10.1115/1.482785Search in Google Scholar

31. Torra V., Isalgue A., Auguet Sangra C., Carreras G. (2012), The SMA: An Effective Damper in Civil Engineering that Smoothes Oscillations, Materials Science Forum, 706-2015, 2020-2025.10.4028/www.scientific.net/MSF.706-709.2020Search in Google Scholar

32. Yasniy P., Hlado V., Hutsaylyuk V., Vuherer T. (2005), Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue & Fracture of Engineering Materials & Structures, 28(4), 391-397.10.1111/j.1460-2695.2005.00870.xSearch in Google Scholar

33. Yasniy P., Kolisnyk M., Kononchuk O., Iasnii V. (2017), Calculation of constructive parameters of SMA damper, Scientific Journal of TNTU, 88(4), 7-15.10.33108/visnyk_tntu2017.04.007Search in Google Scholar