[1. Bartsch S. (2012), Development, control, and empirical evaluation of the six-legged robot SpaceClimber designed for extraterrestrial crater exploration, dissertation, Bremen, University of Bremen.]Search in Google Scholar
[2. Boston Dynamics website https://www.bostondynamics.com/robots [Access date: 26.10.2017].]Search in Google Scholar
[3. Garcia E., Estremera J., Gonzalez-de-Santos P. (2002) A comparative study of stability margins for walking machines. Robotica, 20, 595-606.10.1017/S0263574702004502]Ouvrir le DOISearch in Google Scholar
[4. Garcia E., Estremera J., Gonzalez-de-Santos P. (2002), A classification of stability margins for walking robots, Proceedings of CLA-WAR, Paris, France.]Search in Google Scholar
[5. Hajiabadi M.M.A. (2013), Analytical workspace, kinematics, and foot force based stability of hexapod walking robots, dissertation, Worcester: Worcester Polytechnic Institute.]Search in Google Scholar
[6. Hirsoe S., Tsukagoshi H., Yoneda K. (2001), Normalized energy stability margin and its contour of walking vehicles on rough terrain, International Conference on Robotics & Automation, Seoul Korea.]Search in Google Scholar
[7. Hung M-H., Cheng F-T., Lee H-L. (2005), Orin DE. Increasing the stability margin of multilegged vehicles through body sway. J Chin. Inst. Eng, 28, 39-54.]Search in Google Scholar
[8. Inagaki K. (1998), A gait study for one-leg-disabled hexapod robot, Advanced Robotics, 12, 593-604.10.1163/156855397X00489]Search in Google Scholar
[9. Kim J-Y., Jun B-H. (2014), Design of six-legged walking robot, Little Crabster for underwater walking and operation, Advanced Robotics, 28, 77-89.10.1080/01691864.2013.856832]Search in Google Scholar
[10. Kolouche S., Rollinson D., Choset H. (2015), Modularity for maximum mobility and manipulation: control of a reconfigurable legged robot with series-elastic actuators, Proceedings of the IEEE International Symposium on Safety, Security and Robotics (SSRR), 1-8.10.1109/SSRR.2015.7442943]Search in Google Scholar
[11. Lewinger W.A, Branicky M.S., Quinn R.D. (2005), Insect-inspired, actively compliant hexapod capable of object manipulation, Proceedings of CLAWAR, Londom, 65-72.10.1007/3-540-26415-9_7]Search in Google Scholar
[12. Manz M., Bartsch S., Kirchner F. (2013), MANTIS - a robot with advanced locomotion and manipulation abilities, Proceedings of Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk the Netherlands.]Search in Google Scholar
[13. Morecki A., Knapczyk.J. (1999), Basics of Robotics – theory and elements of manipulators and robots (in polish), Warszawa.10.1007/978-3-7091-2532-8]Search in Google Scholar
[14. Roennau A., Heppner G., Nowicki M., Dillmann R. (2014), LAURON V: A versatile six-legged walking robot with Advanced Maneuverability, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besançon, France, 82-87.10.1109/AIM.2014.6878051]Search in Google Scholar
[15. Saunders A., Goldman D.I., Full R.J., Buehler M. (2006), The RiSE climbing robot: body and leg design, Proceedings of The International Society of Optical Engineering, Orlando USA, 6230, 623017.10.1117/12.666150]Search in Google Scholar
[16. Tang Y., Ma S., Sun Y., Ge D. (2015), Planar legged walking of passive-spine hexapod robot, Advanced Robotics, 29, 1510-1525.10.1080/01691864.2015.1070105]Search in Google Scholar
[17. Todd D.J. (1985), Walking machines - An introduction to legged robots, Springer, London.10.1007/978-1-4684-6858-8]Search in Google Scholar
[18. Wojtkowiak D., Malujda I., Talaśka K., Magdziak Ł., Wieczorek B. (2017), Influence of the Body Weight Distribution on the Walking Robot's Gait Stability, Proceedia Engineering, 177, 419-424.10.1016/j.proeng.2017.02.239]Search in Google Scholar
[19. Wojtkowiak D., Talaśka K., Malujda I. (2016), Computer analysis of insect-like robot leg structure – part 1 – Static Finite-Element analysis, Journal of Mechanical and Transport Engineering, 68(3), 53-62.10.21008/j.2449-920X.2016.68.3.05]Search in Google Scholar
[20. Wojtkowiak D., Talaśka K., Malujda I. (2016), Computer analysis of insect-like robot leg structure – part 2 – kinematic and dynamic analyses, Journal of Mechanical and Transport Engineering, 68(3), 63-75.10.21008/j.2449-920X.2016.68.3.06]Search in Google Scholar
[21. Wojtkowiak D., Talaśka K., Malujda I. (2017), The selection of the bimorph walking robot drives based on the dynamic model of its legs (in polish), Inżynieria wytwarzania, Wyd. uczelniane Państwowej Wyższej Szkoły Zawodowej w Kaliszu, in press.]Search in Google Scholar
[22. Zielińska T. (2014), Walking robots – basics, design, steering and biological patterns, PWN, Warszawa.]Search in Google Scholar