[1. Bedekar V., Oliver J., Priya S. (2009), Pen harvester for powering a pulse rate sensor, Journal of Physics D: Applied Physics, 42(10), 105105.10.1088/0022-3727/42/10/105105]Search in Google Scholar
[2. Beeby S., Tudor M., White N. (2006), Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17(12), 175-195.10.1088/0957-0233/17/12/R01]Search in Google Scholar
[3. Beeby S.P., Torah R.N. Tudor M.J. (2008), Kinetic energy harvesting. ACT Workshop on Innovative Concepts. ESA-ESTEC, 17, 1-10.]Search in Google Scholar
[4. Doedel E., Oldeman B. (2012), Auto-07p: Continuation and bifurcation software for ordinary differential equations, Concordia University, Montreal, 1–266.]Search in Google Scholar
[5. Earnshaw S. (1842). On the nature of the molecular forces which regulate the constitution of the luminiferous ether, Transactions of the Cambridge Philosophical Society, 7, 97–112.]Search in Google Scholar
[6. Gomand J., Remy G., Tounzi A., Barre P.J., Hautier J.P. (2007), Impact of permanent magnet field on inductance variation of a PMLSM, European Conference on Power Electronics and Applications, 1-10.10.1109/EPE.2007.4417589]Search in Google Scholar
[7. Jonnalagadda A.S. (2007) Magnetic induction systems to harvest energy from mechanical vibrations, PhD thesis, Massachusetts Institute Engineering.]Search in Google Scholar
[8. Joyce S. (2011) Development of an electromagnetic energy harvester for monitoring wind turbine blades, PhD thesis, Virginia Polytechnic.]Search in Google Scholar
[9. Kecik K. (2015) Dynamics and control of an active pendulum system, International Journal of Non-linear Mechanics, 70, 63-72.10.1016/j.ijnonlinmec.2014.11.028]Search in Google Scholar
[10. Kecik K., Brzeski P., Perlikowski P. (2017a) Non-linear dynamics and optimization of a harvester absorber system, International Journal of Structural Stability and Dynamics, 17(9), 1-15.10.1142/S0219455417400016]Search in Google Scholar
[11. Kecik K., Mitura A. (2016), Nonlinear dynamics of a vibration harvest-absorber system. Experimental Study, Springer Proceedings in Mathematics & Statistics, Dynamical Systems: Modelling, 181, 197-208.10.1007/978-3-319-42402-6_17]Search in Google Scholar
[12. Kecik K., Mitura A., Lenci S., Warminski J. (2017b), Energy harvesting from a magnetic levitation system, International Journal of Non-linear Mechanics, 94, 200-206.10.1016/j.ijnonlinmec.2017.03.021]Search in Google Scholar
[13. Li Y.J., Dai Q., Zhang Y., Wang H., Chen Z., Sun R.X., Zheng J., Deng C.Y., Deng Z.G. (2016), Design and analysis of an electromagnetic turnout for the superconducting Maglev system Physica C: Superconductivity and its Applications, 528, 84-89.10.1016/j.physc.2016.07.021]Search in Google Scholar
[14. Mann B., Sims N. (2010), On the performance and resonant frequency of electromagnetic induction energy harvesters, Journal of Sound and Vibration, 329(1-2), 1348–1361.10.1016/j.jsv.2009.11.008]Search in Google Scholar
[15. Mann B.P. Sims N.D. (2009), Energy harvesting from the nonlinear oscillations of magnetic levitation, Journal of Sound and Vibration, 319(1-2), 515–530.10.1016/j.jsv.2008.06.011]Search in Google Scholar
[16. Mann B.P., Owens B.A. (2010), Investigations of a nonlinear energy harvester with a bistable potential well, Journal of Sound and Vibration 329, 1215-1226.10.1016/j.jsv.2009.11.034]Search in Google Scholar
[17. Mitcheson P.D. (2005), Analysis and optimisation of energy-harvesting micro-generator systems, University of London.]Search in Google Scholar
[18. Mitcheson P.D., Green T.C., Yeatman E.M., Holmes A.S. (2004), Architectures for vibration-driven micropower generators, Journal of Microelectromechanical Systems, 13(3), 429-440.10.1109/JMEMS.2004.830151]Ouvrir le DOISearch in Google Scholar
[19. Olaru R., Gherca R., Petrescu C. (2014), Analysis and design of a vibration energy harvester using permanent magnets, Revue Roumaine des Sciences Techniques - Serie Electrotechnique, 59(2), 131–140.]Search in Google Scholar
[20. Qian N., Zheng B., Gou Y., Chen P., Zheng J., Deng Z. (2015), Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev, Physica C: Superconductivity and its Applications, 519, 34-42.10.1016/j.physc.2015.08.007]Search in Google Scholar
[21. Soares S.M.P., Ferreira J.A.F., Simoes J.A.O., Pascoal R., Torrao J., Xue X., Furlani E.P. (2016), Magnetic levitation-based electro-magnettic energy harvesting: a semi-analytical non-linear model for energy transduction, Scientific Reports 6, Article ID 18579.10.1038/srep18579]Search in Google Scholar
[22. Sun R., Zheng J., Zheng B., Qian N., Li J., Deng Z. (2018), New magnetic rails with double-layer Halbach structure by employing NdFeB and ferrite magnets for HTS maglev, Journal of Magnetism and Magnetic Materials, 445, 44-48.10.1016/j.jmmm.2017.08.082]Search in Google Scholar
[23. Williams C., Yates R. (1996), Analysis of a micro-electric generator for microsystems, Sensors and Actuators A: Physical, 52 (1-3) 8–11.10.1016/0924-4247(96)80118-X]Search in Google Scholar
[24. Zhou D, Yu P., Wang L, Li J. (2017), An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities, Journal of Sound and Vibration, 408(10), 331-350.10.1016/j.jsv.2017.07.037]Search in Google Scholar
[25. Zhu H., Khiang Pang Ch., Joo Teo T. (2017), Analysis and control of a 6 DOF maglev positioning system with characteristics of end-effects and eddy current damping, Mechatronics, 47, 183-194.10.1016/j.mechatronics.2016.12.004]Search in Google Scholar