Accès libre

The High Penetrability of Nanoparticles into Bacterial Membranes: A Key of a Potential Application

À propos de cet article

Citez

1. Adler J.: Chemotaxis in bacteria. Science, 153, 708–716 (1966) Adler J. : Chemotaxis in bacteria . Science , 153 , 708 - 716 ( 1966 ) Search in Google Scholar

2. Ansari M.A., Khan H.M., Khan A.A., Cameotra S.S., Alzohairy M.A.: Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J. Med. Microbiol. 33, 101–109 (2015) Ansari M.A. Khan H.M. Khan A.A. Cameotra S.S. Alzohairy M.A. : Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital . Indian J. Med. Microbiol . 33 , 101 - 109 ( 2015 ) Search in Google Scholar

3. Arakha M., Pal S., Samantarrai D., Panigrahi T.K., Mallick B.C., Pramanik K., Mallick B., Jha S.: Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 5, 14813 (2015) Arakha M. Pal S. Samantarrai D. Panigrahi T.K. Mallick B.C. Pramanik K. Mallick B. Jha S. : Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface . Sci. Rep . 5 , 14813 ( 2015 ) Search in Google Scholar

4. AshaRani P.V., Low KahMun G., Hande M.P., Valiyaveettil S.: Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279–290 (2009) AshaRani P.V. Low KahMun G. Hande M.P. Valiyaveettil S. : Cytotoxicity and genotoxicity of silver nanoparticles in human cells . ACS Nano , 3 , 279 - 290 ( 2009 ) Search in Google Scholar

5. Baek Y.W., An Y.J.: Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total. Environ. 409, 1603–1608 (2011) Baek Y.W. An Y.J. : Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus . Sci. Total. Environ . 409 , 1603 - 1608 ( 2011 ) Search in Google Scholar

6. Bao H., Yu X., Xu C., Li X., Li Z., Wei D., Liu Y.: New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One, 10, e122535 (2015) Bao H. Yu X. Xu C. Li X. Li Z. Wei D. Liu Y. : New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation . PLoS One , 10 , e122535 ( 2015 ) Search in Google Scholar

7. Barbier F., Andremont A., Wolff M., Bouadma L.: Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr. Opin. Pulm. Med. 19, 216–228 (2013) Barbier F. Andremont A. Wolff M. Bouadma L. : Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management . Curr. Opin. Pulm. Med . 19 , 216 - 228 ( 2013 ) Search in Google Scholar

8. Bhalla P., Rengaswamy R., Karunagaran D., Suraishkumar G.K., SahooS.:Silver nanoparticle induced oxidative stress augments anticancer gut bacterial metabolites production. bioRxiv, doi: https://doi.org/10.1101/658609 (2019) Bhalla P. Rengaswamy R. Karunagaran D. Suraishkumar G.K. Sahoo S. : Silver nanoparticle induced oxidative stress augments anticancer gut bacterial metabolites production . bioRxiv , doi: https://doi.org/10.1101/658609 ( 2019 ) Search in Google Scholar

9. Bleves S., Viarre V., Salacha R., Michel G.P., Filloux A., Voulhoux R.: Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons. Int. J. Med. Microbiol. 300, 534–543 (2010) Bleves S. Viarre V. Salacha R. Michel G.P. Filloux A. Voulhoux R. : Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons . Int. J. Med. Microbiol . 300 , 534 - 543 ( 2010 ) Search in Google Scholar

10. Brown A.N., Smith K., Samuels T.A., Lu J., Obare S.O., Scott M.E.: Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 78, 2768–2774 (2012) Brown A.N. Smith K. Samuels T.A. Lu J. Obare S.O. Scott M.E. : Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus . Appl. Environ. Microbiol . 78 , 2768 - 2774 ( 2012 ) Search in Google Scholar

11. Cao Y.C., Jin R., Mirkin C.A.: Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science, 297, 1536–1540 (2002) Cao Y.C. Jin R. Mirkin C.A. : Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection . Science , 297 , 1536 - 1540 ( 2002 ) Search in Google Scholar

12. Chakraborty R., Sarkar R.K., Chatterjee A.K., Manju U., Chattopadhyay A.P., and Basu T.: A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: unraveling the biological and chemical modes of action. Biochim. Biophys.Acta Gen. Subj. 1850, 845–856 (2015) Chakraborty R. Sarkar R.K. Chatterjee A.K. Manju U. Chattopadhyay A.P. and Basu T. : A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: unraveling the biological and chemical modes of action . Biochim. Biophys.Acta Gen. Subj . 1850 , 845 - 856 ( 2015 ) Search in Google Scholar

13. Chatterjee A.K., Chakraborty R., Basu T.: Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology, 25, 135101 (2014) Chatterjee A.K. Chakraborty R. Basu T. : Mechanism of antibacterial activity of copper nanoparticles . Nanotechnology , 25 , 135101 ( 2014 ) Search in Google Scholar

14. Ciofu O., Tolker-Nielsen T.: Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents-How P. aeruginosa Can Escape Antibiotics. Front. Microbiol. 10, 913 (2019) Ciofu O. Tolker-Nielsen T. : Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents-How P. aeruginosa Can Escape Antibiotics . Front. Microbiol . 10 , 913 ( 2019 ) Search in Google Scholar

15. Dakal T.C., Kumar A., Majumdar R.S., Yadav V.: Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1831 (2016) Dakal T.C. Kumar A. Majumdar R.S. Yadav V. : Mechanistic basis of antimicrobial actions of silver nanoparticles . Front. Microbiol . 7 , 1831 ( 2016 ) Search in Google Scholar

16. Dhanabalan K., Gurunathan K.: Microemulsion mediated synthesis and characterization of CdS nanoparticles and its anti-biofilm efficacy against Escherichia coli ATCC 25922. J. Nanosci. Nanotechnol. 15, 4200–4204 (2015) Dhanabalan K. Gurunathan K. : Microemulsion mediated synthesis and characterization of CdS nanoparticles and its anti-biofilm efficacy against Escherichia coli ATCC 25922 . J. Nanosci. Nanotechnol . 15 , 4200 - 4204 ( 2015 ) Search in Google Scholar

17. Diels L., van der Lelie N., Bastiaens L.: New development in treatment of heavy metal contaminated soils. Rev. Environ. Sci. Biotechnol. 1, 75–82 (2002) Diels L. van der Lelie N. Bastiaens L. : New development in treatment of heavy metal contaminated soils . Rev. Environ. Sci. Biotechnol . 1 , 75 - 82 ( 2002 ) Search in Google Scholar

18. Durán N., Durán M., de Jesus M.B., Seabra A.B., Fávaro W.J., Nakazato G.: Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 12, 789–799 (2016) Durán N. Durán M. de Jesus M.B. Seabra A.B. Fávaro W.J. Nakazato G. : Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity . Nanomedicine , 12 , 789 - 799 ( 2016 ) Search in Google Scholar

19. Fabrega J., Renshaw J.C., Lead J.R.: Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ. Sci. Technol. 43, 9004–9009 (2009) Fabrega J. Renshaw J.C. Lead J.R. : Interactions of silver nanoparticles with Pseudomonas putida biofilms . Environ. Sci. Technol . 43 , 9004 - 9009 ( 2009 ) Search in Google Scholar

20. Fabrega J., Zhang R., Renshaw J.C., Liu W.T., Lead J.R.: Impact of silver nanoparticles on natural marine biofilm bacteria. Chemosphere, 85, 961–966 (2011) Fabrega J. Zhang R. Renshaw J.C. Liu W.T. Lead J.R. : Impact of silver nanoparticles on natural marine biofilm bacteria . Chemosphere , 85 , 961 - 966 ( 2011 ) Search in Google Scholar

21. Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 1097–4636 (2000) Feng Q.L. Wu J. Chen G.Q. Cui F.Z. Kim T.N. Kim J.O. : A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus . J. Biomed. Mater. Res . 52 , 1097 - 4636 ( 2000 ) Search in Google Scholar

22. Gholipourmalekabadi M., Mobaraki M., Ghaffari M., Zarebkohan A., Omrani V., Urbanska A., Seifalian A.: Targeted drug delivery based on gold nanoparticle derivatives. Curr. Pharm. Des. 23, 2918–2929 (2017) Gholipourmalekabadi M. Mobaraki M. Ghaffari M. Zarebkohan A. Omrani V. Urbanska A. Seifalian A. : Targeted drug delivery based on gold nanoparticle derivatives . Curr. Pharm. Des . 23 , 2918 - 2929 ( 2017 ) Search in Google Scholar

23. Guisbiers G., Wang Q., Khachatryan E., Mimun L.C., Mendoza-Cruz R., Larese-Casanova P., Webster T.J., Nash K.L.: Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. Int. J. Nanomedicine, 11, 3731–3736 (2016) Guisbiers G. Wang Q. Khachatryan E. Mimun L.C. Mendoza-Cruz R. Larese-Casanova P. Webster T.J. Nash K.L. : Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water . Int. J. Nanomedicine , 11 , 3731 - 3736 ( 2016 ) Search in Google Scholar

24. Gurunathan S., Han J.W., Kwon D.N., Kim J.H.: Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett. 9, 373 (2014) Gurunathan S. Han J.W. Kwon D.N. Kim J.H. : Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria . Nanoscale Res. Lett . 9 , 373 ( 2014 ) Search in Google Scholar

25. Haefeli C., Franklin C., Hardy K.: Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J. Bacteriol. 158, 389–392 (1984) Haefeli C. Franklin C. Hardy K. : Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine . J. Bacteriol . 158 , 389 - 392 ( 1984 ) Search in Google Scholar

26. Hajipour M.J., Fromm K.M., Ashkarran A., Akbar, de Aberasturi D., Jimenez de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M.: Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012) Hajipour M.J. Fromm K.M. Ashkarran A. Akbar de Aberasturi D. Jimenez de Larramendi I.R. Rojo T. Serpooshan V. Parak W.J. Mahmoudi M. : Antibacterial properties of nanoparticles . Trends Biotechnol . 30 , 499 - 511 ( 2012 ) Search in Google Scholar

27. Harrison J.J., Turner R.J., Ceri H.: Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 5, 928–938 (2007) Harrison J.J. Turner R.J. Ceri H. : Multimetal resistance and tolerance in microbial biofilms . Nat. Rev. Microbiol . 5 , 928 - 938 ( 2007 ) Search in Google Scholar

28. Harrison J.J., Turner R.J., Ceri H.: Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ.Microbiol. 7, 981–994 (2005) Harrison J.J. Turner R.J. Ceri H. : Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa . Environ.Microbiol . 7 , 981 - 994 ( 2005 ) Search in Google Scholar

29. Harwood C.S., Parales R.E., Dispensa M.: Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl. Environ. Microbiol. 56, 501–1503 (1990) Harwood C.S. Parales R.E. Dispensa M. : Chemotaxis of Pseudomonas putida toward chlorinated benzoates . Appl. Environ. Microbiol . 56 , 501 - 1503 ( 1990 ) Search in Google Scholar

30. Hemeg H.A.: Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed, 12, 8211–8225 (2017) Hemeg H.A. : Nanomaterials for alternative antibacterial therapy . Int. J. Nanomed , 12 , 8211 - 8225 ( 2017 ) Search in Google Scholar

31. Hernandez-Delgadillo R., Velasco-Arias D., Diaz D., et al.: Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int. J. Nanomedicine, 7, 2109–2113 (2012) Hernandez-Delgadillo R. Velasco-Arias D. Diaz D. et al. : Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm . Int. J. Nanomedicine , 7 , 2109 - 2113 ( 2012 ) Search in Google Scholar

32. Huh A.J., and Kwon Y.J.: “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 156, 128–145 (2011) Huh A.J. and Kwon Y.J. : “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era . J. Control. Release , 156 , 128 - 145 ( 2011 ) Search in Google Scholar

33. Iravani S.: Bacteria in Nanoparticle Synthesis: Current status and future prospects. Int. Sch. Res. Notices, doi: 10.1155/2014/359316(2014) Iravani S. : Bacteria in Nanoparticle Synthesis: Current status and future prospects . Int. Sch. Res. Notices , doi: 10.1155/2014/359316 ( 2014 ) Search in Google Scholar

34. Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018) Jeevanandam J. Barhoum A. Chan Y.S. Dufresne A. Danquah M.K. : Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations . Beilstein J. Nanotechnol . 9 , 1050 - 1074 ( 2018 ) Search in Google Scholar

35. Kalishwaralal K., BarathManiKanth S., Pandian S.R., Deepak V., Gurunathan S.: Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcusepidermidis. Colloids Surf. B. Biointerfaces. 79, 340–344 (2010) Kalishwaralal K. BarathManiKanth S. Pandian S.R. Deepak V. Gurunathan S. : Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcusepidermidis . Colloids Surf. B. Biointerfaces . 79 , 340 - 344 ( 2010 ) Search in Google Scholar

36. Khan S.T., Wahab R., Ahmad J., Saquib Q., Mussarat J.: CoO thin nanosheets exhibit higher antimicrobial activity against tested Gram-positive bacteria than Gram-negative bacteria. Korean J. Chem. Eng. 53, 565–569 (2015) Khan S.T. Wahab R. Ahmad J. Saquib Q. Mussarat J. : CoO thin nanosheets exhibit higher antimicrobial activity against tested Gram-positive bacteria than Gram-negative bacteria . Korean J. Chem. Eng . 53 , 565 - 569 ( 2015 ) Search in Google Scholar

37. Kirschling T.L.: Nanoparticle Interactions with Bacteria: Toxicity and Chemotaxis. Carnegie Mellon Department of Chemical Engineering MBL Microbial Diversity Course, 1–20 (2009) Kirschling T.L. : Nanoparticle Interactions with Bacteria: Toxicity and Chemotaxis . Carnegie Mellon Department of Chemical Engineering MBL Microbial Diversity Course , 1 - 20 ( 2009 ) Search in Google Scholar

38. Kumar A., Pandey A.K., Singh S.S., Shanker R., Dhawan A.: Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical. Biol. Med. 51, 1872–1881 (2011) Kumar A. Pandey A.K. Singh S.S. Shanker R. Dhawan A. : Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli . Free Radical. Biol. Med . 51 , 1872 - 1881 ( 2011 ) Search in Google Scholar

39. Labrenz M., Banfield J.F., et al.:Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290, 1744–1747 (2000) Labrenz M. Banfield J.F. et al. : Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria . Science , 290 , 1744 - 1747 ( 2000 ) Search in Google Scholar

40. Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller RN.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 110, 2574 (2010) Laurent S. Forge D. Port M. Roch A. Robic C. Vander Elst L. Muller RN. : Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications . Chem. Rev . 110 , 2574 ( 2010 ) Search in Google Scholar

41. Lee J-H., Kim Y-G., Cho MH., Lee J.: ZnOnanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol. Res. 169, 888–896 (2014) Lee J-H. Kim Y-G. Cho MH. Lee J. : ZnOnanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production . Microbiol. Res . 169 , 888 - 896 ( 2014 ) Search in Google Scholar

42. Lellouche J., Friedman A., Gedanken A., Banin E.: Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int. J. Nanomedicine, 7, 5611–5624 (2012) Lellouche J. Friedman A. Gedanken A. Banin E. : Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles . Int. J. Nanomedicine , 7 , 5611 - 5624 ( 2012 ) Search in Google Scholar

43. Lesniak A., Salvati A., Santos-Martinez M.J., Radomski M.W., Dawson K.A., Åberg C.: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 135, 1438–1444 (2013) Lesniak A. Salvati A. Santos-Martinez M.J. Radomski M.W. Dawson K.A. Åberg C. : Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency . J. Am. Chem. Soc . 135 , 1438 - 1444 ( 2013 ) Search in Google Scholar

44. Leuba K.D., Durmus N.G., Taylor E.N., and Webster T.J. Short communication: carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int. J. Nanomedicine, 8, 731–736 (2013) Leuba K.D. Durmus N.G. Taylor E.N. Webster T.J. Short communication : carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation . Int. J. Nanomedicine , 8 , 731 - 736 ( 2013 ) Search in Google Scholar

45. Leung Y.H., Leung F.C.C., et al.: Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small, 10, 1171–1183 (2014) Leung Y.H. Leung F.C.C. et al. : Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli . Small , 10 , 1171 - 1183 ( 2014 ) Search in Google Scholar

46. Li H., Chen Q., Zhao J., and Urmila K.: Enhancing the anti-microbial activity of natural extraction using the synthetic ultra-small metal nanoparticles. Sci. Rep. 5, 11033 (2015) Li H. Chen Q. Zhao J. Urmila K. : Enhancing the anti-microbial activity of natural extraction using the synthetic ultra-small metal nanoparticles . Sci. Rep . 5 , 11033 ( 2015 ) Search in Google Scholar

47. Livermore D.M.: Current epidemiology and growing resistance of gram-negative pathogens. Korean J. Intern. Med. 27, 128–142 (2012) Livermore D.M. : Current epidemiology and growing resistance of gram-negative pathogens . Korean J Intern. Med . 27 , 128 - 142 ( 2012 ) Search in Google Scholar

48. Loureiro A., Azoia N.G., Gomes A.C.: Cavaco-Paulo A. Albumin-based nanodevices as drug carriers. Curr. Pharm. Des. 22, 1371–1390 (2016) Loureiro A. Azoia N.G. Gomes A.C. Cavaco-Paulo A. Albumin-based nanodevices as drug carriers . Curr. Pharm. Des . 22 , 1371 - 1390 ( 2016 ) Search in Google Scholar

49. Lyczak J.B., Cannon C.L., Pier G.B.: Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbiol. Infect. 2, 1051–1060 (2000) Lyczak J.B. Cannon C.L. Pier G.B. : Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist . Microbiol. Infect . 2 , 1051 - 1060 ( 2000 ) Search in Google Scholar

50. Ma S., Lin D.: The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ. Sci. Processes Impacts. 15, 145–160 (2013) Ma S. Lin D. : The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization . Environ. Sci. Processes Impacts . 15 , 145 - 160 ( 2013 ) Search in Google Scholar

51. Magnusson K.E., Bayer M.E.: Anionic sites on the envelope of Salmonella typhimurium mapped with cationized ferritin. Cell Biophys. 41, 163–175 (1982) Magnusson K.E. Bayer M.E. : Anionic sites on the envelope of Salmonella typhimurium mapped with cationized ferritin . Cell Biophys . 41 , 163 - 175 ( 1982 ) Search in Google Scholar

52. MatÍas Barrionuevo R., Vullo D.L.: Bacterial swimming, swarming and chemotactic response to heavy metal presence: which could be the influence on wastewater biotreatment efficiency? World J. Microbiol. Biotechnol. 28, 2813–2825 (2012) MatÍas Barrionuevo R. Vullo D.L. : Bacterial swimming, swarming and chemotactic response to heavy metal presence: which could be the influence on wastewater biotreatment efficiency? World J . Microbiol. Biotechnol . 28 , 2813 - 2825 ( 2012 ) Search in Google Scholar

53. Meliani A., Bensoltane A.: Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas. J. Bioremediat. Biodegrad. 7, 370 (2016) Meliani A. Bensoltane A. : Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas . J. Bioremediat. Biodegrad . 7 , 370 ( 2016 ) Search in Google Scholar

54. Meliani A., Bensoltane A.: Chemotaxis behavior of Pseudomonas species and biodegradation of pollutants. Sustainable Agriculture Reviews, 31, 351–383 (2018) Meliani A. Bensoltane A. : Chemotaxis behavior of Pseudomonas species and biodegradation of pollutants . Sustainable Agriculture Reviews , 31 , 351 - 383 ( 2018 ) Search in Google Scholar

55. Mueller C.F., Laude K., McNally J.S., Harrison D.G.: Redox mechanisms in blood vessels. Arterioscler. Thromb. Vasc. Biol. 25, 274–278 (2005) Mueller C.F. Laude K. McNally J.S. Harrison D.G. : Redox mechanisms in blood vessels . Arterioscler. Thromb. Vasc. Biol . 25 , 274 - 278 ( 2005 ) Search in Google Scholar

56. Oktar F.N., Yetmez M., Ficai D., Ficai A., Dumitru F., Pica A.: Molecular mechanism and targets of the antimicrobial activity of metal nanoparticles. Curr. Top. Med. Chem. 15, 1583–1588 (2015) Oktar F.N. Yetmez M. Ficai D. Ficai A. Dumitru F. Pica A. : Molecular mechanism and targets of the antimicrobial activity of metal nanoparticles . Curr. Top. Med. Chem . 15 , 1583 - 1588 ( 2015 ) Search in Google Scholar

57. Ortega Á., Zhulin I.B., Krell T.: Sensory repertoire of bacterial chemoreceptors. Microbiol. Mol. Biol. Rev. 81, e00033-17 (2017) Ortega Á. Zhulin I.B. Krell T. : Sensory repertoire of bacterial chemoreceptors . Microbiol. Mol. Biol. Rev . 81 , e00033 - 17 ( 2017 ) Search in Google Scholar

58. Ortega D.R., Fleetwood A.D., Krell T., Harwood C.S.L., Jensen G.J.L., Zhulin I.B.: Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 114, 12809–12814 (2017) Ortega D.R. Fleetwood A.D. Krell T. Harwood C.S.L. Jensen G.J.L. Zhulin I.B. : Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa . Proc. Natl. Acad. Sci. USA , 114 , 12809 - 12814 ( 2017 ) Search in Google Scholar

59. Outten F.W., Outten C.E., O’Halloran T.: Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance. (in)Bacterial Stress Responses, ed. G. Storz, ASM Press, Washington, 2000, pp. 45–157 Outten F.W. Outten C.E. O’Halloran T. : Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance . (in)Bacterial Stress Responses , ed. G. Storz , ASM Press , Washington , 2000 , pp. 45 - 157 Search in Google Scholar

60. Overhage J., Bains M., Brazas M.D., Hancock R.E.W.: Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J. Bacteriol. 190, 2671–2679 (2008) Overhage J. Bains M. Brazas M.D. Hancock R.E.W. : Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance . J. Bacteriol . 190 , 2671 - 2679 ( 2008 ) Search in Google Scholar

61. Padmavathy N., Vijayaraghavan R.: Enhanced bioactivity of ZnO nanoparticles- an antimicrobial study. Sci. Technol. Adv. Mater. 9, 35004 (2008) Padmavathy N. Vijayaraghavan R. : Enhanced bioactivity of ZnO nanoparticles- an antimicrobial study . Sci. Technol. Adv. Mater . 9 , 35004 ( 2008 ) Search in Google Scholar

62. Pang Z., Raudonis R., Glick B.R., Lin T.J., Cheng Z.: Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 37, 177–192 (2019) Pang Z. Raudonis R. Glick B.R. Lin T.J. Cheng Z. : Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies . Biotechnol. Adv . 37 , 177 - 192 ( 2019 ) Search in Google Scholar

63. Pant H.R., Pant B., Sharma R.K., Amarjargal A., Kim H.J., Park C.H., Tijing L.D., Kim C.S.: Antibacterial and photocatalytic properties of Ag/TiO2/Zn Onano-flowers prepared by facile one-pot hydrothermal process. Ceram. Int. 39, 1503–1510 (2013) Pant H.R. Pant B. Sharma R.K. Amarjargal A. Kim H.J. Park C.H. Tijing L.D. Kim C.S. : Antibacterial and photocatalytic properties of Ag/TiO2/Zn Onano-flowers prepared by facile one-pot hydrothermal process . Ceram. Int . 39 , 1503 - 1510 ( 2013 ) Search in Google Scholar

64. Pelgrift R.Y., Friedman A.J.: Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65, 1803–1815 (2013) Pelgrift R.Y. Friedman A.J. : Nanotechnology as a therapeutic tool to combat microbial resistance . Adv. Drug Deliv. Rev . 65 , 1803 - 1815 ( 2013 ) Search in Google Scholar

65. Peterson E., Kaur P.: Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front.Microbiol. 9, 2928 (2018) Peterson E. Kaur P. : Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens . Front.Microbiol . 9 , 2928 ( 2018 ) Search in Google Scholar

66. Qiu Z., Yu Y., Chen Z., Jin M., Yang D., Zhao Z., Wang J., Shen Z., Wang X., Qian D., Huang A., Zhang B., Li J.W.: Nanoalumina-promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc. Natl. Acad. Sci. USA, 109, 4944– 4949 (2012) Qiu Z. Yu Y. Chen Z. Jin M. Yang D. Zhao Z. Wang J. Shen Z. Wang X. Qian D. Huang A. Zhang B. Li J.W. : Nanoalumina-promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera . Proc. Natl. Acad. Sci. USA , 109 , 4944 - 4949 ( 2012 ) Search in Google Scholar

67. Qu Z., Liu P., Yang X., Wang F., Zhang W., Fei C.; Microstructure and characteristic of BiVO4 prepared under different pH values: photocatalytic efficiency and antibacterial activity. Materials, 9, 129 (2016) Qu Z. Liu P. Yang X. Wang F. Zhang W. Fei C. ; Microstructure and characteristic of BiVO4 prepared under different pH values: photocatalytic efficiency and antibacterial activity . Materials , 9 , 129 ( 2016 ) Search in Google Scholar

68. Quinteros M.A., Cano Aristizábal V., Dalmasso P.R., Paraje M.G., Páez P.L., Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol. In Vitro, 36, 216–223 (2016) Quinteros M.A. Cano Aristizábal V. Dalmasso P.R. Paraje M.G. Páez P.L. , Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity . Toxicol. In Vitro , 36 , 216 - 223 ( 2016 ) Search in Google Scholar

69. Radzig M.A., Nadtochenko V.A, Koksharova O.A., Kiwi J., Lipasova V.A., Khmel I.A.: Antibacterial effects of silver nanoparticles on Gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surf. B. Biointerfaces, 102, 300–306 (2013) Radzig M.A. Nadtochenko V.A Koksharova O.A. Kiwi J. Lipasova V.A. Khmel I.A. : Antibacterial effects of silver nanoparticles on Gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action . Colloids Surf. B. Biointerfaces , 102 , 300 - 306 ( 2013 ) Search in Google Scholar

70. Rai M.K., Deshmukh S.D., Ingle A.P., Gade A.K.: Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112, 841–852 (2012) Rai M.K. Deshmukh S.D. Ingle A.P. Gade A.K. : Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria . J. Appl. Microbiol . 112 , 841 - 852 ( 2012 ) Search in Google Scholar

71. Sacco P., Travan A., Borgogna M., Paoletti S., Marsich E.: Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. J. Mater. Sci. Mater. Med. 26, DOI:10.1007/s10856-015-5474-7 (2015) Sacco P. Travan A. Borgogna M. Paoletti S. Marsich E. : Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds . J. Mater. Sci. Mater. Med . 26 , DOI:10.1007/s10856-015-5474-7 ( 2015 ) Search in Google Scholar

72. Sampedro I., Parales R.E., Krell T., Hill J.E., Pseudomonas chemotaxis. FEMS Microbiol. Rev. 39, 17–46 (2015) Sampedro I. Parales R.E. Krell T. Hill J.E. , Pseudomonas chemotaxis . FEMS Microbiol. Rev . 39 , 17 - 46 ( 2015 ) Search in Google Scholar

73. Sarwar S., Chakraborti S., Bera S., Sheikh I.A., Hoque K.M., and Chakrabarti P.: The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: variation in response depends on biotype. Nanomedicine Nanotechnology, Biol. Med. 12, 1499–1509 (2016) Sarwar S. Chakraborti S. Bera S. Sheikh I.A. Hoque K.M. and Chakrabarti P. : The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: variation in response depends on biotype . Nanomedicine Nanotechnology, Biol. Med . 12 , 1499 - 1509 ( 2016 ) Search in Google Scholar

74. Shaan L., Gellatly R., Hancock EW.: Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173 (2013) Shaan L. Gellatly R. Hancock EW. : Pseudomonas aeruginosa: New insights into pathogenesis and host defenses . Pathog. Dis . 67 , 159 - 173 ( 2013 ) Search in Google Scholar

75. Singh P., Cameotra S.S.: Enhancement of metal bioremediation by use of microbial surfactants. Biochem.Biophys. Res. Commun. 319, 291–297 (2004) Singh P. Cameotra S.S. : Enhancement of metal bioremediation by use of microbial surfactants . Biochem.Biophys. Res. Commun . 319 , 291 - 297 ( 2004 ) Search in Google Scholar

76. Slavin Y.N., Asnis J., Häfeli U.O., Bach H.: Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, DOI:10.1186/s12951-017-0308-z (2017) Slavin Y.N. Asnis J. Häfeli U.O. Bach H. : Metal nanoparticles: understanding the mechanisms behind antibacterial activity . J. Nanobiotechnol . 15 , DOI:10.1186/s12951-017-0308-z ( 2017 ) Search in Google Scholar

77. Spirescu V.A., Chircov C., Grumezescu A.M., Vasile B.S., Andronescu E.: Inorganic nanoparticles and composite filmsfor antimicrobial therapies. Int. J. Mol. Sci. 22, 4595 (2021) Spirescu V.A. Chircov C. Grumezescu A.M. Vasile B.S. Andronescu E. : Inorganic nanoparticles and composite filmsfor antimicrobial therapies . Int. J. Mol. Sci . 22 , 4595 ( 2021 ) Search in Google Scholar

78. Teitzel G.M., Parsek M.R.: Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69, 2313–2320 (2003) Teitzel G.M. Parsek M.R. : Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa . Appl. Environ. Microbiol . 69 , 2313 - 2320 ( 2003 ) Search in Google Scholar

79. Thurman R.B., Gerba C.P.: The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Reviews in Environmental Science and Technology, 18, 295–315 (1989) Thurman R.B. Gerba C.P. : The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses . Reviews in Environmental Science and Technology , 18 , 295 - 315 ( 1989 ) Search in Google Scholar

80. Tsuang Y.H., Sun J.S., Huang Y.C., Lu C.H., Hong-Shong Chang W., Wang C.C.: Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif. Organs. 32, 167–174 (2008) Tsuang Y.H. Sun J.S. Huang Y.C. Lu C.H. Hong-Shong Chang W. Wang C.C. : Studies of photokilling of bacteria using titanium dioxide nanoparticles . Artif. Organs . 32 , 167 - 174 ( 2008 ) Search in Google Scholar

81. Umamaheswari K., Baskar R., Chandru K., Rajendiran N., and Chandirasekar S.: Antibacterial activity of gold nanoparticles and their toxicity assessment. BMC Infect. Dis. 14, P64 (2014) Umamaheswari K. Baskar R. Chandru K. Rajendiran N. and Chandirasekar S. : Antibacterial activity of gold nanoparticles and their toxicity assessment . BMC Infect. Dis . 14 , P64 ( 2014 ) Search in Google Scholar

82. Vallyathan V., Shi X.: The role of oxygen free radicals in occupational and environmental lung diseases. Environ. Health Perspect. 105, 165–177 (1997) Vallyathan V. Shi X. : The role of oxygen free radicals in occupational and environmental lung diseases . Environ. Health Perspect . 105 , 165 - 177 ( 1997 ) Search in Google Scholar

83. Verstraeten N., Braeken K., Debkumari B. et al.: Living on a surface: Swarming and biofilm formation. Trends Microbiol. 16, 496–506 (2008) Verstraeten N. Braeken K. Debkumari B. et al. : Living on a surface: Swarming and biofilm formation . Trends Microbiol . 16 , 496 - 506 ( 2008 ) Search in Google Scholar

84. Wadhams G.H., Armitage J.P.: Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024–1037 (2004) Wadhams G.H. Armitage J.P. : Making sense of it all: bacterial chemotaxis . Nat. Rev. Mol. Cell Biol . 5 , 1024 - 1037 ( 2004 ) Search in Google Scholar

85. Wagner-Döbler I., Lünsdorf H., Lübbehüsen T., Von Canstein H.F., Li Y.: Structure and species composition of mercury-reducing biofilms. Appl. Environ. Microbiol. 66, 4559–4563 (2000) Wagner-Döbler I. Lünsdorf H. Lübbehüsen T. Von Canstein H.F. Li Y. : Structure and species composition of mercury-reducing biofilms . Appl. Environ. Microbiol . 66 , 4559 - 4563 ( 2000 ) Search in Google Scholar

86. Wang L., Hu C., Shao L.: The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 12, 1227–1249 (2017) Wang L. Hu C. Shao L. : The antimicrobial activity of nanoparticles: present situation and prospects for the future . Int. J. Nanomedicine , 12 , 1227 - 1249 ( 2017 ) Search in Google Scholar

87. Wang S., Lu W., Tovmachenko O., Rai U.S., Yu H., Ray P.C.: Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys Lett. 463, 145–149 (2008) Wang S. Lu W. Tovmachenko O. Rai U.S. Yu H. Ray P.C. : Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes . Chem. Phys Lett . 463 , 145 - 149 ( 2008 ) Search in Google Scholar

88. White C., Gadd G.M.: Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology, 144, 1407–1415 (1998) White C. Gadd G.M. : Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms . Microbiology , 144 , 1407 - 1415 ( 1998 ) Search in Google Scholar

89. Wong M.S., Chen C.W., Hsieh C.C., Hung S.C., Sun D.S., Chang H.H.: Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light. Sci. Rep. 5, 1978 (2015) Wong M.S. Chen C.W. Hsieh C.C. Hung S.C. Sun D.S. Chang H.H. : Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light . Sci. Rep . 5 , 1978 ( 2015 ) Search in Google Scholar

90. Wu B., Zhuang W.Q., Sahu M., Biswas P., Tang Y.J.: Cu-doped TiO2 nanoparticles enhance survival of ShewanellaoneidensisMR-1 under ultraviolet (UV) light exposure. Sci. Total. Environ. 409, 4635–4639 (2011) Wu B. Zhuang W.Q. Sahu M. Biswas P. Tang Y.J. : Cu-doped TiO2 nanoparticles enhance survival of ShewanellaoneidensisMR-1 under ultraviolet (UV) light exposure . Sci. Total. Environ . 409 , 4635 - 4639 ( 2011 ) Search in Google Scholar

91. Yang L., Watts D.J.: Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 158, 122–132 (2005) Yang L. Watts D.J. : Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles . Toxicol. Lett . 158 , 122 - 132 ( 2005 ) Search in Google Scholar

92. Yang W., Shen C., Ji Q., et al.: Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 20, DOI:10.1088/0957-4484/20/8/085102 (2009) Yang W. Shen C. Ji Q. et al. : Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA . Nanotechnology , 20 , DOI:10.1088/0957-4484/20/8/085102( 2009 ) Search in Google Scholar

93. Zhang T., Wang L., Chen Q., and Chen C.: Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 55, DOI:10.3349/ymj.2014.55.2.283 (2014) Zhang T. Wang L. Chen Q. Chen C. : Cytotoxic potential of silver nanoparticles . Yonsei Med. J . 55 , DOI:10.3349/ymj.2014.55.2.283 ( 2014 ) Search in Google Scholar

94. Zhang W., Li Y., Niu J., and Chen Y.: Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir, 29, 4647– 4651(2013) Zhang W. Li Y. Niu J. Chen Y. : Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects . Langmuir , 29 , 4647 - 4651 ( 2013 ) Search in Google Scholar

95. Zhu K.,Tian H.,Zheng X., Wang L., Wang X.: Triangular silver nanoparticles loaded on graphene oxide sheets as an antibacterial film. Materials Letters, 275, 128162 (2020) Zhu K. Tian H. Zheng X. Wang L. Wang X. : Triangular silver nanoparticles loaded on graphene oxide sheets as an antibacterial film . Materials Letters , 275 , 128162 ( 2020 ) Search in Google Scholar

eISSN:
2545-3149
Langues:
Anglais, Polaco
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Microbiology and Virology