Accès libre

CRISPR/Cas Systems as Diagnostic and Potential Therapeutic Tools for Enterohemorrhagic Escherichia coli

, ,  et   
07 janv. 2025
À propos de cet article

Citez
Télécharger la couverture

Adiego-Pérez B, Randazzo P, Daran JM et al. (2019) Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiol Lett 366:fnz086. https://doi.org/10.1093/femsle/fnz086 Adiego-PérezB RandazzoP DaranJM 2019 Multiplex genome editing of microorganisms using CRISPR-Cas FEMS Microbiol Lett 366 fnz086 https://doi.org/10.1093/femsle/fnz086 Search in Google Scholar

Ao X, Yao Y, Li T et al. (2018) A multiplex genome editing method for Escherichia coli based on CRISPR-Cas12a. Front Microbiol 9:2307. https://doi.org/10.3389/fmicb.2018.02307 AoX YaoY LiT 2018 A multiplex genome editing method for Escherichia coli based on CRISPR-Cas12a Front Microbiol 9 2307 https://doi.org/10.3389/fmicb.2018.02307 Search in Google Scholar

Bai Z, Zhang S, Wang X et al. (2022) Genotyping based on CRISPR loci diversity and pathogenic potential of diarrheagenic Escherichia coli. Front Microbiol 13:852662. https://doi.org/10.3389/fmicb.2022.852662 BaiZ ZhangS WangX 2022 Genotyping based on CRISPR loci diversity and pathogenic potential of diarrheagenic Escherichia coli Front Microbiol 13 852662 https://doi.org/10.3389/fmicb.2022.852662 Search in Google Scholar

Barrangou R, Fremaux C, Deveau H et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/science.1138140 BarrangouR FremauxC DeveauH 2007 CRISPR provides acquired resistance against viruses in prokaryotes Science 315 1709 1712 https://doi.org/10.1126/science.1138140 Search in Google Scholar

Beutin L, Krause G, Zimmermann S et al. (2004) Characterization of Shiga toxin-producing Escherichia coli strains isolated from human patients in Germany over a 3-year period. J Clin Microbiol 42:1099–1108. https://doi.org/10.1128/JCM.42.3.1099-1108.2004 BeutinL KrauseG ZimmermannS 2004 Characterization of Shiga toxin-producing Escherichia coli strains isolated from human patients in Germany over a 3-year period J Clin Microbiol 42 1099 1108 https://doi.org/10.1128/JCM.42.3.1099-1108.2004 Search in Google Scholar

Bolotin A, Quinquis B, Sorokin A et al. (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading) 151:2551–2561. https://doi.org/10.1099/mic.0.28048-0 BolotinA QuinquisB SorokinA 2005 Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin Microbiology (Reading) 151 2551 2561 https://doi.org/10.1099/mic.0.28048-0 Search in Google Scholar

Brooks JT, Sowers EG, Wells JG et al. (2005) Non-O157 shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J Infect Dis 192:1422–1429. https://doi.org/10.1086/466536 BrooksJT SowersEG WellsJG 2005 Non-O157 shiga toxin-producing Escherichia coli infections in the United States, 1983–2002 J Infect Dis 192 1422 1429 https://doi.org/10.1086/466536 Search in Google Scholar

Cameron EA, Curtis MM, Kumar A et al. (2018) Microbiota and pathogen proteases modulate type III secretion activity in enterohemorrhagic Escherichia coli. mBio 9:e2204–e2218. https://doi.org/10.1128/mBio.02204-18 CameronEA CurtisMM KumarA 2018 Microbiota and pathogen proteases modulate type III secretion activity in enterohemorrhagic Escherichia coli mBio 9 e2204 e2218 https://doi.org/10.1128/mBio.02204-18 Search in Google Scholar

Caprioli A, Morabito S, Brugère H et al. (2005) Enterohaemorrhagic Escherichia coli: Emerging issues on virulence and modes of transmission. Vet Res 36:289–311. https://doi.org/10.1051/vetres:2005002 CaprioliA MorabitoS BrugèreH 2005 Enterohaemorrhagic Escherichia coli: Emerging issues on virulence and modes of transmission Vet Res 36 289 311 https://doi.org/10.1051/vetres:2005002 Search in Google Scholar

Carlson-Banning KM, Sperandio V (2018) Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules. Curr Opin Microbiol 41:83–88. https://doi.org/10.1016/j.mib.2017.12.002 Carlson-BanningKM SperandioV 2018 Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules Curr Opin Microbiol 41 83 88 https://doi.org/10.1016/j.mib.2017.12.002 Search in Google Scholar

Chase-Topping M, Gally D, Low C et al. (2008) Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol 6:904–912. https://doi.org/10.1038/nrmicro2029 Chase-ToppingM GallyD LowC 2008 Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157 Nat Rev Microbiol 6 904 912 https://doi.org/10.1038/nrmicro2029 Search in Google Scholar

Cho S, Shin J, Cho BK (2018) Applications of CRISPR/Cas system to bacterial metabolic engineering. Int J Mol Sci 19:1089. https://doi.org/10.3390/ijms19041089 ChoS ShinJ ChoBK 2018 Applications of CRISPR/Cas system to bacterial metabolic engineering Int J Mol Sci 19 1089 https://doi.org/10.3390/ijms19041089 Search in Google Scholar

Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145. https://doi.org/10.1038/nbt.3011 CitorikRJ MimeeM LuTK 2014 Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases Nat Biotechnol 32 1141 1145 https://doi.org/10.1038/nbt.3011 Search in Google Scholar

Compart DP, Anele U, Engel C et al. (2018) PSXIV-12 impact of prebiotic and probiotic feed additive blends on bovine respiratory disease, E. coli O157:H7 shedding, and performance of receiving steers. J Anim Sci 96(Suppl. 3):440. https://doi.org/10.1093/jas/sky404.962 CompartDP AneleU EngelC 2018 PSXIV-12 impact of prebiotic and probiotic feed additive blends on bovine respiratory disease, E. coli O157:H7 shedding, and performance of receiving steers J Anim Sci 96 Suppl. 3 440 https://doi.org/10.1093/jas/sky404.962 Search in Google Scholar

Cordonnier C, Thévenot J, Etienne-Mesmin L et al. (2017) Probiotic and enterohemorrhagic Escherichia coli: An effective strategy against a deadly enemy? Crit Rev Microbiol 43:116–132. https://doi.org/10.1080/1040841X.2016.1185602 CordonnierC ThévenotJ Etienne-MesminL 2017 Probiotic and enterohemorrhagic Escherichia coli: An effective strategy against a deadly enemy? Crit Rev Microbiol 43 116 132 https://doi.org/10.1080/1040841X.2016.1185602 Search in Google Scholar

Delannoy S, Beutin L, Burgos Y et al. (2012a) Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR. J Clin Microbiol 50:3485–3492. https://doi.org/10.1128/JCM.01656-12 DelannoyS BeutinL BurgosY 2012a Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR J Clin Microbiol 50 3485 3492 https://doi.org/10.1128/JCM.01656-12 Search in Google Scholar

Delannoy S, Beutin L, Fach P (2012b) Use of clustered regularly interspaced short palindromic repeat sequence polymorphisms for specific detection of enterohemorrhagic Escherichia coli strains of serotypes O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by real-time PCR. J Clin Microbiol 50:4035–4040. https://doi.org/10.1128/JCM.02097-12 DelannoyS BeutinL FachP 2012b Use of clustered regularly interspaced short palindromic repeat sequence polymorphisms for specific detection of enterohemorrhagic Escherichia coli strains of serotypes O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by real-time PCR J Clin Microbiol 50 4035 4040 https://doi.org/10.1128/JCM.02097-12 Search in Google Scholar

Dong HA, Cui YL, Zhang DW (2021) CRISPR/Cas technologies and their applications in Escherichia coli. Front Bioeng Biotechnol 9:762676. https://doi.org/10.3389/fbioe.2021.762676 DongHA CuiYL ZhangDW 2021 CRISPR/Cas technologies and their applications in Escherichia coli Front Bioeng Biotechnol 9 762676 https://doi.org/10.3389/fbioe.2021.762676 Search in Google Scholar

Ebrahimi V, Hashemi A (2020) Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Gene 753:144813. https://doi.org/10.1016/j.gene.2020.144813 EbrahimiV HashemiA 2020 Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review Gene 753 144813 https://doi.org/10.1016/j.gene.2020.144813 Search in Google Scholar

Fan R, Shao K, Yang X et al. (2019) High prevalence of non-O157 Shiga toxin-producing Escherichia coli in beef cattle detected by combining four selective agars. BMC Microbiol 19:213. https://doi.org/10.1186/s12866-019-1582-8 FanR ShaoK YangX 2019 High prevalence of non-O157 Shiga toxin-producing Escherichia coli in beef cattle detected by combining four selective agars BMC Microbiol 19 213 https://doi.org/10.1186/s12866-019-1582-8 Search in Google Scholar

Fang T, Shen J, Xue J et al. (2022) Sensitive and rapid detection of Escherichia coli O157:H7 from beef samples based on recombinase aided amplification assisted CRISPR/Cas12a system. J AOAC Int 106:156–164. https://doi.org/10.1093/jaoacint/qsac101 FangT ShenJ XueJ 2022 Sensitive and rapid detection of Escherichia coli O157:H7 from beef samples based on recombinase aided amplification assisted CRISPR/Cas12a system J AOAC Int 106 156 164 https://doi.org/10.1093/jaoacint/qsac101 Search in Google Scholar

García-Gutiérrez E, Almendros C, Mojica FJ et al. (2015) CRISPR content correlates with the pathogenic potential of Escherichia coli. PLoS One 10:e0131935. https://doi.org/10.1371/journal.pone.0131935 García-GutiérrezE AlmendrosC MojicaFJ 2015 CRISPR content correlates with the pathogenic potential of Escherichia coli PLoS One 10 e0131935 https://doi.org/10.1371/journal.pone.0131935 Search in Google Scholar

Gardette M, Daniel J, Loukiadis E et al. (2020) Role of the nitric oxide reductase NorVW in the survival and virulence of enterohaemorrhagic Escherichia coli during infection. Pathogens 9:683. https://doi.org/10.3390/pathogens9090683 GardetteM DanielJ LoukiadisE 2020 Role of the nitric oxide reductase NorVW in the survival and virulence of enterohaemorrhagic Escherichia coli during infection Pathogens 9 683 https://doi.org/10.3390/pathogens9090683 Search in Google Scholar

Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35(Web Server issue):W52–W57. https://doi.org/10.1093/nar/gkm360 GrissaI VergnaudG PourcelC 2007 CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats Nucleic Acids Res 35 Web Server issue W52 W57 https://doi.org/10.1093/nar/gkm360 Search in Google Scholar

Hauser JR, Atitkar RR, Petro CD et al. (2020) The virulence of Escherichia coli O157:H7 isolates in mice depends on Shiga toxin type 2a (Stx2a)-Induction and high levels of Stx2a in stool. Front Cell Infect Microbiol 10:62. https://doi.org/10.3389/fcimb.2020.00062 HauserJR AtitkarRR PetroCD 2020 The virulence of Escherichia coli O157:H7 isolates in mice depends on Shiga toxin type 2a (Stx2a)-Induction and high levels of Stx2a in stool Front Cell Infect Microbiol 10 62 https://doi.org/10.3389/fcimb.2020.00062 Search in Google Scholar

Hoshiga F, Yoshizaki K, Takao N et al. (2019) Modification of T2 phage infectivity toward Escherichia coli O157:H7 via using CRISPR/Cas9. FEMS Microbiol Lett 366:fnz041. https://doi.org/10.1093/femsle/fnz041 HoshigaF YoshizakiK TakaoN 2019 Modification of T2 phage infectivity toward Escherichia coli O157:H7 via using CRISPR/Cas9 FEMS Microbiol Lett 366 fnz041 https://doi.org/10.1093/femsle/fnz041 Search in Google Scholar

Hua Y, Chromek M, Frykman A et al. (2021) Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden. Virulence 12:1296–1305. https://doi.org/10.1080/21505594.2021.1922010 HuaY ChromekM FrykmanA 2021 Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden Virulence 12 1296 1305 https://doi.org/10.1080/21505594.2021.1922010 Search in Google Scholar

Jiang L, Yang W, Jiang X et al. (2021) Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 13:1992237. https://doi.org/10.1080/19490976.2021.1992237 JiangL YangW JiangX 2021 Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7 Gut Microbes 13 1992237 https://doi.org/10.1080/19490976.2021.1992237 Search in Google Scholar

Jiang W, He C, Bai L et al. (2023) Rapid and visual method for nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a-PMNT. Foods 12:236. https://doi.org/10.3390/foods12020236 JiangW HeC BaiL 2023 Rapid and visual method for nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a-PMNT Foods 12 236 https://doi.org/10.3390/foods12020236 Search in Google Scholar

Jiang Y, Yin S, Dudley EG et al. (2015) Diversity of CRISPR loci and virulence genes in pathogenic Escherichia coli isolates from various sources. Int J Food Microbiol 204:41–46. https://doi.org/10.1016/j.ijfoodmicro.2015.03.025 JiangY YinS DudleyEG 2015 Diversity of CRISPR loci and virulence genes in pathogenic Escherichia coli isolates from various sources Int J Food Microbiol 204 41 46 https://doi.org/10.1016/j.ijfoodmicro.2015.03.025 Search in Google Scholar

Jin ML, Chen JC, Zhao XY et al. (2022) An engineered lambda phage enables enhanced and strain-specific killing of enterohemorrhagic Escherichia coli. Microbiol Spectr 10:e0127122. https://doi.org/10.1128/spectrum.01271-22 JinML ChenJC ZhaoXY 2022 An engineered lambda phage enables enhanced and strain-specific killing of enterohemorrhagic Escherichia coli Microbiol Spectr 10 e0127122 https://doi.org/10.1128/spectrum.01271-22 Search in Google Scholar

Karmali MA (2018) Factors in the emergence of serious human infections associated with highly pathogenic strains of shiga toxin-producing Escherichia coli. Int J Med Microbiol 308:1067–1072. https://doi.org/10.1016/j.ijmm.2018.08.005 KarmaliMA 2018 Factors in the emergence of serious human infections associated with highly pathogenic strains of shiga toxin-producing Escherichia coli Int J Med Microbiol 308 1067 1072 https://doi.org/10.1016/j.ijmm.2018.08.005 Search in Google Scholar

Keir LS, Marks SD, Kim JJ (2012) Shiga toxin-associated hemolytic uremic syndrome: Current molecular mechanisms and future therapies. Drug Des Devel Ther 6:195–208. https://doi.org/10.2147/DDDT.S25757 KeirLS MarksSD KimJJ 2012 Shiga toxin-associated hemolytic uremic syndrome: Current molecular mechanisms and future therapies Drug Des Devel Ther 6 195 208 https://doi.org/10.2147/DDDT.S25757 Search in Google Scholar

Kim M, Kim J, Kuehn LA et al. (2014) Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci 92:683–694. https://doi.org/10.2527/jas.2013-6841 KimM KimJ KuehnLA 2014 Investigation of bacterial diversity in the feces of cattle fed different diets J Anim Sci 92 683 694 https://doi.org/10.2527/jas.2013-6841 Search in Google Scholar

Kim M, Kuehn LA, Bono JL et al. (2017a) The impact of the bovine faecal microbiome on Escherichia coli O157:H7 prevalence and enumeration in naturally infected cattle. J Appl Microbiol 123:1027–1042. https://doi.org/10.1111/jam.13545 KimM KuehnLA BonoJL 2017a The impact of the bovine faecal microbiome on Escherichia coli O157:H7 prevalence and enumeration in naturally infected cattle J Appl Microbiol 123 1027 1042 https://doi.org/10.1111/jam.13545 Search in Google Scholar

Kim SA, Park SH, Lee SI et al. (2017b) Rapid and simple method by combining FTA (TM) card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples. Lett Appl Microbiol 65:482–488. https://doi.org/10.1111/lam.12805 KimSA ParkSH LeeSI 2017b Rapid and simple method by combining FTA (TM) card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples Lett Appl Microbiol 65 482 488 https://doi.org/10.1111/lam.12805 Search in Google Scholar

Kim U, Lee SY, Oh SW (2023) Thermophilic helicase-dependent amplification-based CRISPR/Cas12a system: Detection of stx2 in Escherichia coli O157:H7 by controlling primer dimers. Anal Chim Acta 1239:340679. https://doi.org/10.1016/j.aca.2022.340679 KimU LeeSY OhSW 2023 Thermophilic helicase-dependent amplification-based CRISPR/Cas12a system: Detection of stx2 in Escherichia coli O157:H7 by controlling primer dimers Anal Chim Acta 1239 340679 https://doi.org/10.1016/j.aca.2022.340679 Search in Google Scholar

Kolodziejek AM, Minnich SA, Hovde CJ (2022) Escherichia coli 0157:H7 virulence factors and the ruminant reservoir. Curr Opin Infect Dis 35:205–214. https://doi.org/10.1097/QCO.0000000000000834 KolodziejekAM MinnichSA HovdeCJ 2022 Escherichia coli 0157:H7 virulence factors and the ruminant reservoir Curr Opin Infect Dis 35 205 214 https://doi.org/10.1097/QCO.0000000000000834 Search in Google Scholar

König E, Zerbini F, Zanella I et al. (2018) Multiple stepwise gene knockout using CRISPR/Cas9 in Escherichia coli. Bio Protoc 8:e2688. https://doi.org/10.21769/BioProtoc.2688 KönigE ZerbiniF ZanellaI 2018 Multiple stepwise gene knockout using CRISPR/Cas9 in Escherichia coli Bio Protoc 8 e2688 https://doi.org/10.21769/BioProtoc.2688 Search in Google Scholar

Larzábal M, Da Silva WM, Multani A et al. (2020) Early immune innate hallmarks and microbiome changes across the gut during Escherichia coli O157: H7 infection in cattle. Sci Rep 10:21535. https://doi.org/10.1038/s41598-020-78752-x LarzábalM Da SilvaWM MultaniA 2020 Early immune innate hallmarks and microbiome changes across the gut during Escherichia coli O157: H7 infection in cattle Sci Rep 10 21535 https://doi.org/10.1038/s41598-020-78752-x Search in Google Scholar

Lee HJ, Lee SJ (2021) Advances in accurate microbial genome-editing CRISPR technologies. J Microbiol Biotechnol 31:903–911. https://doi.org/10.4014/jmb.2106.06056 LeeHJ LeeSJ 2021 Advances in accurate microbial genome-editing CRISPR technologies J Microbiol Biotechnol 31 903 911 https://doi.org/10.4014/jmb.2106.06056 Search in Google Scholar

Lee KS, Jeong YJ, Lee MS (2021) Escherichia coli Shiga toxins and gut microbiota interactions. Toxins (Basel) 13:416. https://doi.org/10.3390/toxins13060416 LeeKS JeongYJ LeeMS 2021 Escherichia coli Shiga toxins and gut microbiota interactions Toxins (Basel) 13 416 https://doi.org/10.3390/toxins13060416 Search in Google Scholar

Lee SY, Oh SW (2022) Filtration-based LAMP-CRISPR/Cas12a system for the rapid, sensitive and visualized detection of Escherichia coli O157:H7. Talanta 241:123186. https://doi.org/10.1016/j.talanta.2021.123186 LeeSY OhSW 2022 Filtration-based LAMP-CRISPR/Cas12a system for the rapid, sensitive and visualized detection of Escherichia coli O157:H7 Talanta 241 123186 https://doi.org/10.1016/j.talanta.2021.123186 Search in Google Scholar

Lim JY, Yoon JW, Hovde CJ (2010) A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 20: 5–14. https://doi.org/10.4014/jmb.0908.08007 LimJY YoonJW HovdeCJ 2010 A brief overview of Escherichia coli O157:H7 and its plasmid O157 J Microbiol Biotechnol 20 5 14 https://doi.org/10.4014/jmb.0908.08007 Search in Google Scholar

Liu Y, Liu B, Yang P et al. (2019) LysR-type transcriptional regulator OvrB encoded in O island 9 drives enterohemorrhagic Escherichia coli O157:H7 virulence. Virulence 10:783–792. https://doi.org/10.1080/21505594.2019.1661721 LiuY LiuB YangP 2019 LysR-type transcriptional regulator OvrB encoded in O island 9 drives enterohemorrhagic Escherichia coli O157:H7 virulence Virulence 10 783 792 https://doi.org/10.1080/21505594.2019.1661721 Search in Google Scholar

Liu Z, Dong H, Cui Y et al. (2020) Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact 19:172. https://doi.org/10.1186/s12934-020-01431-z LiuZ DongH CuiY 2020 Application of different types of CRISPR/Cas-based systems in bacteria Microb Cell Fact 19 172 https://doi.org/10.1186/s12934-020-01431-z Search in Google Scholar

Long J, Xu Y, Ou L et al. (2019) Polymorphism of Type I-F CRISPR/Cas system in Escherichia coli of phylogenetic group B2 and its application in genotyping. Infect Genet Evol 74:103916. https://doi.org/10.1016/j.meegid.2019.103916 LongJ XuY OuL 2019 Polymorphism of Type I-F CRISPR/Cas system in Escherichia coli of phylogenetic group B2 and its application in genotyping Infect Genet Evol 74 103916 https://doi.org/10.1016/j.meegid.2019.103916 Search in Google Scholar

Luo J, Xu D, Wang J et al. (2024) Dual-mode platform for the rapid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a and RPA. Anal Bioanal Chem 416:3509–3518. https://doi.org/10.1007/s00216-024-05301-0 LuoJ XuD WangJ 2024 Dual-mode platform for the rapid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a and RPA Anal Bioanal Chem 416 3509 3518 https://doi.org/10.1007/s00216-024-05301-0 Search in Google Scholar

Makarova KS, Wolf YI, Iranzo J et al. (2020) Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83. https://doi.org/10.1038/s41579-019-0299-x MakarovaKS WolfYI IranzoJ 2020 Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants Nat Rev Microbiol 18 67 83 https://doi.org/10.1038/s41579-019-0299-x Search in Google Scholar

Mao S, Zhang M, Liu J et al. (2015) Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Sci Rep 5:16116. https://doi.org/10.1038/srep16116 MaoS ZhangM LiuJ 2015 Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function Sci Rep 5 16116 https://doi.org/10.1038/srep16116 Search in Google Scholar

Mellmann A, Bielaszewska M, Köck R et al. (2008) Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg Infect Dis 14:1287–1290. https://doi.org/10.3201/eid1408.071082 MellmannA BielaszewskaM KöckR 2008 Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli Emerg Infect Dis 14 1287 1290 https://doi.org/10.3201/eid1408.071082 Search in Google Scholar

Mir RA, Schaut RG, Looft T et al. (2020) Recto-Anal Junction (RAJ) and fecal microbiomes of cattle experimentally challenged with Escherichia coli O157:H7. Front Microbiol 11:693. https://doi.org/10.3389/fmicb.2020.00693 MirRA SchautRG LooftT 2020 Recto-Anal Junction (RAJ) and fecal microbiomes of cattle experimentally challenged with Escherichia coli O157:H7 Front Microbiol 11 693 https://doi.org/10.3389/fmicb.2020.00693 Search in Google Scholar

Mir RA, Weppelmann TA, Elzo M et al. (2016) Colonization of beef cattle by shiga toxin-producing Escherichia coli during the first year of life: A cohort study. PLoS One 11:e0148518. https://doi.org/10.1371/journal.pone.0148518 MirRA WeppelmannTA ElzoM 2016 Colonization of beef cattle by shiga toxin-producing Escherichia coli during the first year of life: A cohort study PLoS One 11 e0148518 https://doi.org/10.1371/journal.pone.0148518 Search in Google Scholar

Mojica FJ, Díez-Villaseñor C, García-Martínez J et al. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. https://doi.org/10.1007/s00239-004-0046-3 MojicaFJ Díez-VillaseñorC García-MartínezJ 2005 Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements J Mol Evol 60 174 182 https://doi.org/10.1007/s00239-004-0046-3 Search in Google Scholar

Mojica FJM, Díez-Villaseñor C, García-Martínez J et al. (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Reading) 155:733–740. https://doi.org/10.1099/mic.0.023960-0 MojicaFJM Díez-VillaseñorC García-MartínezJ 2009 Short motif sequences determine the targets of the prokaryotic CRISPR defence system Microbiology (Reading) 155 733 740 https://doi.org/10.1099/mic.0.023960-0 Search in Google Scholar

Montero DA, Velasco J, Del Canto F et al. (2017) Locus of adhesion and autoaggregation (LAA), a pathogenicity island present in emerging Shiga toxin-producing Escherichia coli strains. Sci Rep 7:7011. https://doi.org/10.1038/s41598-017-06999-y MonteroDA VelascoJ Del CantoF 2017 Locus of adhesion and autoaggregation (LAA), a pathogenicity island present in emerging Shiga toxin-producing Escherichia coli strains Sci Rep 7 7011 https://doi.org/10.1038/s41598-017-06999-y Search in Google Scholar

Nawrocki EM, Mosso HM, Dudley EG (2020) A toxic environment: A growing understanding of how microbial communities affect Escherichia coli O157:H7 Shiga toxin expression. Appl Environ Microbiol 86:e509–e520. https://doi.org/10.1128/AEM.00509-20 NawrockiEM MossoHM DudleyEG 2020 A toxic environment: A growing understanding of how microbial communities affect Escherichia coli O157:H7 Shiga toxin expression Appl Environ Microbiol 86 e509 e520 https://doi.org/10.1128/AEM.00509-20 Search in Google Scholar

Neil K, Allard N, Grenier F et al. (2020) Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl(2) conjugative plasmid TP114. Commun Biol 3:523. https://doi.org/10.1038/s42003-020-01253-0 NeilK AllardN GrenierF 2020 Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl(2) conjugative plasmid TP114 Commun Biol 3 523 https://doi.org/10.1038/s42003-020-01253-0 Search in Google Scholar

Neil K, Allard N, Rodrigue S (2021) Molecular mechanisms influencing bacterial conjugation in the intestinal microbiota. Front Microbiol 12:673260. https://doi.org/10.3389/fmicb.2021.673260 NeilK AllardN RodrigueS 2021 Molecular mechanisms influencing bacterial conjugation in the intestinal microbiota Front Microbiol 12 673260 https://doi.org/10.3389/fmicb.2021.673260 Search in Google Scholar

Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014): Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156: 935–49. doi: 10.1016/j.cell.2014.02.001 NishimasuH RanFA HsuPD KonermannS ShehataSI DohmaeN IshitaniR ZhangF NurekiO 2014 Crystal structure of Cas9 in complex with guide RNA and target DNA Cell 156 935 49 10.1016/j.cell.2014.02.001 Open DOISearch in Google Scholar

Ogura Y, Ooka T, Iguchi A et al. (2009) Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A 106:17939–17944. https://doi.org/10.1073/pnas.0903585106 OguraY OokaT IguchiA 2009 Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli Proc Natl Acad Sci U S A 106 17939 17944 https://doi.org/10.1073/pnas.0903585106 Search in Google Scholar

Ogura Y, Seto K, Morimoto Y et al. (2018) Genomic characterization of beta-glucuronidase-positive Escherichia coli O157:H7 producing Stx2a. Emerg Infect Dis 24:2219–2227. https://doi.org/10.3201/eid2412.180404 OguraY SetoK MorimotoY 2018 Genomic characterization of beta-glucuronidase-positive Escherichia coli O157:H7 producing Stx2a Emerg Infect Dis 24 2219 2227 https://doi.org/10.3201/eid2412.180404 Search in Google Scholar

Pacheco AR, Lazarus JE, Sit B et al. (2018) CRISPR screen reveals that EHEC’s T3SS and Shiga toxin rely on shared host factors for infection. mBio 9:e1003–e1018. https://doi.org/10.1128/mBio.01003-18 PachecoAR LazarusJE SitB 2018 CRISPR screen reveals that EHEC’s T3SS and Shiga toxin rely on shared host factors for infection mBio 9 e1003 e1018 https://doi.org/10.1128/mBio.01003-18 Search in Google Scholar

Pawluk A, Davidson AR, Maxwell KL (2018) Anti-CRISPR: Discovery, mechanism and function. Nat Rev Microbiol 16:12–17. https://doi.org/10.1038/nrmicro.2017.120 PawlukA DavidsonAR MaxwellKL 2018 Anti-CRISPR: Discovery, mechanism and function Nat Rev Microbiol 16 12 17 https://doi.org/10.1038/nrmicro.2017.120 Search in Google Scholar

Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading) 151:653–663. https://doi.org/10.1099/mic.0.27437-0 PourcelC SalvignolG VergnaudG 2005 CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies Microbiology (Reading) 151 653 663 https://doi.org/10.1099/mic.0.27437-0 Search in Google Scholar

Puligundla P, Lim S (2022) Biocontrol approaches against Escherichia coli O157:H7 in foods. Foods 11:756. https://doi.org/10.3390/foods11050756 PuligundlaP LimS 2022 Biocontrol approaches against Escherichia coli O157:H7 in foods Foods 11 756 https://doi.org/10.3390/foods11050756 Search in Google Scholar

Rath D, Amlinger L, Rath A et al. (2015) The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie 117:119–128. https://doi.org/10.1016/j.biochi.2015.03.025 RathD AmlingerL RathA 2015 The CRISPR-Cas immune system: Biology, mechanisms and applications Biochimie 117 119 128 https://doi.org/10.1016/j.biochi.2015.03.025 Search in Google Scholar

Salaheen S, Kim SW, Karns JS et al. (2019) Metagenomic analysis of the fecal microbiomes from Escherichia coli O157:H7-shedding and non-shedding cows on a single dairy farm. Food Control 102:76–80. https://doi.org/10.1016/j.foodcont.2019.03.022 SalaheenS KimSW KarnsJS 2019 Metagenomic analysis of the fecal microbiomes from Escherichia coli O157:H7-shedding and non-shedding cows on a single dairy farm Food Control 102 76 80 https://doi.org/10.1016/j.foodcont.2019.03.022 Search in Google Scholar

Santos AS, Finlay BB (2015) Bringing down the host: Enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways. Cell Microbiol 17:318–332. https://doi.org/10.1111/cmi.12412 SantosAS FinlayBB 2015 Bringing down the host: Enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways Cell Microbiol 17 318 332 https://doi.org/10.1111/cmi.12412 Search in Google Scholar

Sauder AB, Kendall MM (2018) After the Fact(or): Posttranscriptional gene regulation in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 200:e228–e218. https://doi.org/10.1128/JB.00228-18 SauderAB KendallMM 2018 After the Fact(or): Posttranscriptional gene regulation in enterohemorrhagic Escherichia coli O157:H7 J Bacteriol 200 e228 e218 https://doi.org/10.1128/JB.00228-18 Search in Google Scholar

Schuller S (2011) Shiga toxin interaction with human intestinal epithelium. Toxins (Basel) 3:626–639. https://doi.org/10.3390/toxins3060626 SchullerS 2011 Shiga toxin interaction with human intestinal epithelium Toxins (Basel) 3 626 639 https://doi.org/10.3390/toxins3060626 Search in Google Scholar

Sheng H, Knecht HJ, Kudva IT et al. (2006) Application of bacteriophages to control intestinal Escherichia coli O157: H7 levels in ruminants. Appl Environ Microbiol 72:5359–5366. https://doi.org/10.1128/AEM.00099-06 ShengH KnechtHJ KudvaIT 2006 Application of bacteriophages to control intestinal Escherichia coli O157: H7 levels in ruminants Appl Environ Microbiol 72 5359 5366 https://doi.org/10.1128/AEM.00099-06 Search in Google Scholar

Sheng H, Wu S, Xue Y et al. (2023) Engineering conjugative CRISPR-Cas9 systems for the targeted control of enteric pathogens and antibiotic resistance. PLoS One 18:e0291520. https://doi.org/10.1371/journal.pone.0291520 ShengH WuS XueY 2023 Engineering conjugative CRISPR-Cas9 systems for the targeted control of enteric pathogens and antibiotic resistance PLoS One 18 e0291520 https://doi.org/10.1371/journal.pone.0291520 Search in Google Scholar

Shringi S, Sheng H, Potter AA et al. (2021) Repeated oral vaccination of cattle with shiga toxin-negative Escherichia coli O157:H7 reduces carriage of wild-type E. coli O157:H7 after challenge. Appl Environ Microbiol 87:e2183–e2120. https://doi.org/10.1128/AEM.02183-20 ShringiS ShengH PotterAA 2021 Repeated oral vaccination of cattle with shiga toxin-negative Escherichia coli O157:H7 reduces carriage of wild-type E. coli O157:H7 after challenge Appl Environ Microbiol 87 e2183 e2120 https://doi.org/10.1128/AEM.02183-20 Search in Google Scholar

Song D, Han X, Xu W et al. (2023) Target nucleic acid amplification-free detection of Escherichia coli O157:H7 by CRISPR/Cas12a and hybridization chain reaction based on an evanescent wave fluorescence biosensor. Sens Actuators B: Chem 376:133005. https://doi.org/10.1016/j.snb.2022.133005 SongD HanX XuW 2023 Target nucleic acid amplification-free detection of Escherichia coli O157:H7 by CRISPR/Cas12a and hybridization chain reaction based on an evanescent wave fluorescence biosensor Sens Actuators B: Chem 376 133005 https://doi.org/10.1016/j.snb.2022.133005 Search in Google Scholar

Sorek R, Kunin V, Hugenholtz P (2008) CRISPR – A widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186. https://doi.org/10.1038/nrmicro1793 SorekR KuninV HugenholtzP 2008 CRISPR – A widespread system that provides acquired resistance against phages in bacteria and archaea Nat Rev Microbiol 6 181 186 https://doi.org/10.1038/nrmicro1793 Search in Google Scholar

Soysal N, Mariani-Kurkdjian P, Smail Y et al. (2016) Enterohemorrhagic Escherichia coli hybrid pathotype O80:H2 as a new therapeutic challenge. Emerg Infect Dis 22:1604–1612. https://doi.org/10.3201/eid2209.160304 SoysalN Mariani-KurkdjianP SmailY 2016 Enterohemorrhagic Escherichia coli hybrid pathotype O80:H2 as a new therapeutic challenge Emerg Infect Dis 22 1604 1612 https://doi.org/10.3201/eid2209.160304 Search in Google Scholar

Spano LC, Guerrieri CG, Volpini LPB et al. (2021) EHEC O111:H8 strain and norovirus GII.4 Sydney P16 causing an outbreak in a daycare center, Brazil, 2019. BMC Microbiol 21:95. https://doi.org/10.1186/s12866-021-02161-x SpanoLC GuerrieriCG VolpiniLPB 2021 EHEC O111:H8 strain and norovirus GII.4 Sydney P16 causing an outbreak in a daycare center, Brazil, 2019 BMC Microbiol 21 95 https://doi.org/10.1186/s12866-021-02161-x Search in Google Scholar

Sperandio V (2010) SdiA sensing of acyl-homoserine lactones by enterohemorrhagic E. coli (EHEC) serotype O157:H7 in the bovine rumen. Gut Microbes 1:432–435. https://doi.org/10.4161/gmic.1.6.14177 SperandioV 2010 SdiA sensing of acyl-homoserine lactones by enterohemorrhagic E. coli (EHEC) serotype O157:H7 in the bovine rumen Gut Microbes 1 432 435 https://doi.org/10.4161/gmic.1.6.14177 Search in Google Scholar

Sperandio V, Hovde C (2015) Enterohemorrhagic Escherichia coli and other Shiga-toxin-producing E. coli. ASM Press, Washington DC. https://doi.org/10.1086/686851 SperandioV HovdeC 2015 Enterohemorrhagic Escherichia coli and other Shiga-toxin-producing E. coli ASM Press Washington DC https://doi.org/10.1086/686851 Search in Google Scholar

Stenkamp-Strahm C, McConnel C, Magzamen S et al. (2018) Associations between Escherichia coli O157 shedding and the faecal microbiota of dairy cows. J Appl Microbiol 124:881–898. https://doi.org/10.1111/jam.13679 Stenkamp-StrahmC McConnelC MagzamenS 2018 Associations between Escherichia coli O157 shedding and the faecal microbiota of dairy cows J Appl Microbiol 124 881 898 https://doi.org/10.1111/jam.13679 Search in Google Scholar

Tahoun A, El-Sharkawy H, Moustafa SM et al. (2021) Mitotic arrest-deficient 2 like 2 (MAD2L2) interacts with Escherichia coli effector protein EspF. Life (Basel) 11:971. https://doi.org/10.3390/life11090971 TahounA El-SharkawyH MoustafaSM 2021 Mitotic arrest-deficient 2 like 2 (MAD2L2) interacts with Escherichia coli effector protein EspF Life (Basel) 11 971 https://doi.org/10.3390/life11090971 Search in Google Scholar

Tamminen LM, Söderlund R, Wilkinson DA et al. (2019) Risk factors and dynamics of verotoxigenic Escherichia coli O157:H7 on cattle farms: An observational study combining information from questionnaires, spatial data and molecular analyses. Prev Vet Med 170:104726. https://doi.org/10.1016/j.prevetmed.2019.104726 TamminenLM SöderlundR WilkinsonDA 2019 Risk factors and dynamics of verotoxigenic Escherichia coli O157:H7 on cattle farms: An observational study combining information from questionnaires, spatial data and molecular analyses Prev Vet Med 170 104726 https://doi.org/10.1016/j.prevetmed.2019.104726 Search in Google Scholar

van Houte S, Ekroth AK, Broniewski JM et al. (2016) The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532:385–388. https://doi.org/10.1038/nature17436 van HouteS EkrothAK BroniewskiJM 2016 The diversity-generating benefits of a prokaryotic adaptive immune system Nature 532 385 388 https://doi.org/10.1038/nature17436 Search in Google Scholar

Vasco K, Nohomovich B, Singh P et al. (2021) Characterizing the cattle gut microbiome in farms with a high and low prevalence of shiga toxin producing Escherichia coli. Microorganisms 9:1737. https://doi.org/10.3390/microorganisms9081737 VascoK NohomovichB SinghP 2021 Characterizing the cattle gut microbiome in farms with a high and low prevalence of shiga toxin producing Escherichia coli Microorganisms 9 1737 https://doi.org/10.3390/microorganisms9081737 Search in Google Scholar

Virolle C, Goldlust K, Djermoun S et al. (2020) Plasmid transfer by conjugation in gram-negative bacteria: From the cellular to the community level. Genes (Basel) 11:1239. https://doi.org/10.3390/genes11111239 VirolleC GoldlustK DjermounS 2020 Plasmid transfer by conjugation in gram-negative bacteria: From the cellular to the community level Genes (Basel) 11 1239 https://doi.org/10.3390/genes11111239 Search in Google Scholar

Wang O, McAllister TA, Plastow G et al. (2018) Interactions of the hindgut mucosa-associated microbiome with its host regulate shedding of Escherichia coli O157:H7 by cattle. Appl Environ Microbiol 84:e1738–e1717. https://doi.org/10.1128/AEM.01738-17 WangO McAllisterTA PlastowG 2018 Interactions of the hindgut mucosa-associated microbiome with its host regulate shedding of Escherichia coli O157:H7 by cattle Appl Environ Microbiol 84 e1738 e1717 https://doi.org/10.1128/AEM.01738-17 Search in Google Scholar

Wang S, Fan Y, Feng Z et al. (2021) Rapid nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a system. Food Control 130:108194. https://doi.org/10.1016/j.foodcont.2021.108194 WangS FanY FengZ 2021 Rapid nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a system Food Control 130 108194 https://doi.org/10.1016/j.foodcont.2021.108194 Search in Google Scholar

Wang Z, Chen H, Hu A et al. (2024) Establishment of LAMP-CRISPR/Cas12a for rapid detection of Escherichia coli O157:H7 and one-pot detection. Food Microbiol 124:104622. https://doi.org/10.1016/j.fm.2024.104622 WangZ ChenH HuA 2024 Establishment of LAMP-CRISPR/Cas12a for rapid detection of Escherichia coli O157:H7 and one-pot detection Food Microbiol 124 104622 https://doi.org/10.1016/j.fm.2024.104622 Search in Google Scholar

Warr AR, Hubbard TP, Munera D et al. (2019) Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog 15:e1007652. https://doi.org/10.1371/journal.ppat.1007652 WarrAR HubbardTP MuneraD 2019 Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization PLoS Pathog 15 e1007652 https://doi.org/10.1371/journal.ppat.1007652 Search in Google Scholar

Wells JE, Berry ED, Kim M et al. (2017) Evaluation of commercial β-agonists, dietary protein, and shade on fecal shedding of Escherichia coli O157:H7 from feedlot cattle. Foodborne Pathog Dis 14:649–655. https://doi.org/10.1089/fpd.2017.2313 WellsJE BerryED KimM 2017 Evaluation of commercial β-agonists, dietary protein, and shade on fecal shedding of Escherichia coli O157:H7 from feedlot cattle Foodborne Pathog Dis 14 649 655 https://doi.org/10.1089/fpd.2017.2313 Search in Google Scholar

Wells JE, Kim M, Bono JL et al. (2014) MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Escherichia coli O157:H7, diet, and fecal microbiome in beef cattle. J Anim Sci 92:1345–1355. https://doi.org/10.2527/jas.2013-7282 WellsJE KimM BonoJL 2014 MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Escherichia coli O157:H7, diet, and fecal microbiome in beef cattle J Anim Sci 92 1345 1355 https://doi.org/10.2527/jas.2013-7282 Search in Google Scholar

Won MY, Oyama LB, Courtney SJ et al. (2020) Can rumen bacteria communicate to each other? Microbiome 8:23. https://doi.org/10.1186/s40168-020-00796-y WonMY OyamaLB CourtneySJ 2020 Can rumen bacteria communicate to each other? Microbiome 8 23 https://doi.org/10.1186/s40168-020-00796-y Search in Google Scholar

Xu Y, Dugat-Bony E, Zaheer R et al. (2014) Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communities. PLoS One 9:e98115. https://doi.org/10.1371/journal.pone.0098115 XuY Dugat-BonyE ZaheerR 2014 Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communities PLoS One 9 e98115 https://doi.org/10.1371/journal.pone.0098115 Search in Google Scholar

Zaheer R, Dugat-Bony E, Holman DB et al. (2017) Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine. PLoS One 12:e0170050. https://doi.org/10.1371/journal.pone.0170050 ZaheerR Dugat-BonyE HolmanDB 2017 Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine PLoS One 12 e0170050 https://doi.org/10.1371/journal.pone.0170050 Search in Google Scholar

Zetsche B, Gootenberg JS, Abudayyeh OO et al. (2015) Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038 ZetscheB GootenbergJS AbudayyehOO 2015 Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell 163 759 771 https://doi.org/10.1016/j.cell.2015.09.038 Search in Google Scholar

Zhao L, Tyler PJ, Starnes J et al. (2013) Correlation analysis of Shiga toxin-producing Escherichia coli shedding and faecal bacterial composition in beef cattle. J Appl Microbiol 115:591–603. https://doi.org/10.1111/jam.12250 ZhaoL TylerPJ StarnesJ 2013 Correlation analysis of Shiga toxin-producing Escherichia coli shedding and faecal bacterial composition in beef cattle J Appl Microbiol 115 591 603 https://doi.org/10.1111/jam.12250 Search in Google Scholar

Zhu L, Liang Z, Xu Y et al. (2023) Ultrasensitive and rapid visual detection of Escherichia coli O157:H7 based on RAA-CRISPR/Cas12a system. Biosensors (Basel) 13:659. https://doi.org/10.3390/bios13060659 ZhuL LiangZ XuY 2023 Ultrasensitive and rapid visual detection of Escherichia coli O157:H7 based on RAA-CRISPR/Cas12a system Biosensors (Basel) 13 659 https://doi.org/10.3390/bios13060659 Search in Google Scholar

Zhu X, Wu Y, Lv X et al. (2022) Combining CRISPR-Cpf1 and recombineering facilitates fast and efficient genome editing in Escherichia coli. ACS Synth Biol 11:1897–1907. https://doi.org/10.1021/acssynbio.2c00041 ZhuX WuY LvX 2022 Combining CRISPR-Cpf1 and recombineering facilitates fast and efficient genome editing in Escherichia coli ACS Synth Biol 11 1897 1907 https://doi.org/10.1021/acssynbio.2c00041 Search in Google Scholar

Zumbrun SD, Melton-Celsa AR, Smith MA et al. (2013) Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease. Proc Natl Acad Sci U S A 110:E2126–E2133. https://doi.org/10.1073/pnas.1222014110 ZumbrunSD Melton-CelsaAR SmithMA 2013 Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease Proc Natl Acad Sci U S A 110 E2126 E2133 https://doi.org/10.1073/pnas.1222014110 Search in Google Scholar