This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Adiego-Pérez B, Randazzo P, Daran JM et al. (2019) Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiol Lett 366:fnz086. https://doi.org/10.1093/femsle/fnz086Adiego-PérezBRandazzoPDaranJM2019Multiplex genome editing of microorganisms using CRISPR-CasFEMS Microbiol Lett366fnz086https://doi.org/10.1093/femsle/fnz086Search in Google Scholar
Ao X, Yao Y, Li T et al. (2018) A multiplex genome editing method for Escherichia coli based on CRISPR-Cas12a. Front Microbiol 9:2307. https://doi.org/10.3389/fmicb.2018.02307AoXYaoYLiT2018A multiplex genome editing method for Escherichia coli based on CRISPR-Cas12aFront Microbiol92307https://doi.org/10.3389/fmicb.2018.02307Search in Google Scholar
Bai Z, Zhang S, Wang X et al. (2022) Genotyping based on CRISPR loci diversity and pathogenic potential of diarrheagenic Escherichia coli. Front Microbiol 13:852662. https://doi.org/10.3389/fmicb.2022.852662BaiZZhangSWangX2022Genotyping based on CRISPR loci diversity and pathogenic potential of diarrheagenic Escherichia coliFront Microbiol13852662https://doi.org/10.3389/fmicb.2022.852662Search in Google Scholar
Barrangou R, Fremaux C, Deveau H et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/science.1138140BarrangouRFremauxCDeveauH2007CRISPR provides acquired resistance against viruses in prokaryotesScience31517091712https://doi.org/10.1126/science.1138140Search in Google Scholar
Beutin L, Krause G, Zimmermann S et al. (2004) Characterization of Shiga toxin-producing Escherichia coli strains isolated from human patients in Germany over a 3-year period. J Clin Microbiol 42:1099–1108. https://doi.org/10.1128/JCM.42.3.1099-1108.2004BeutinLKrauseGZimmermannS2004Characterization of Shiga toxin-producing Escherichia coli strains isolated from human patients in Germany over a 3-year periodJ Clin Microbiol4210991108https://doi.org/10.1128/JCM.42.3.1099-1108.2004Search in Google Scholar
Bolotin A, Quinquis B, Sorokin A et al. (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading) 151:2551–2561. https://doi.org/10.1099/mic.0.28048-0BolotinAQuinquisBSorokinA2005Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal originMicrobiology (Reading)15125512561https://doi.org/10.1099/mic.0.28048-0Search in Google Scholar
Brooks JT, Sowers EG, Wells JG et al. (2005) Non-O157 shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J Infect Dis 192:1422–1429. https://doi.org/10.1086/466536BrooksJTSowersEGWellsJG2005Non-O157 shiga toxin-producing Escherichia coli infections in the United States, 1983–2002J Infect Dis19214221429https://doi.org/10.1086/466536Search in Google Scholar
Cameron EA, Curtis MM, Kumar A et al. (2018) Microbiota and pathogen proteases modulate type III secretion activity in enterohemorrhagic Escherichia coli. mBio 9:e2204–e2218. https://doi.org/10.1128/mBio.02204-18CameronEACurtisMMKumarA2018Microbiota and pathogen proteases modulate type III secretion activity in enterohemorrhagic Escherichia colimBio9e2204e2218https://doi.org/10.1128/mBio.02204-18Search in Google Scholar
Caprioli A, Morabito S, Brugère H et al. (2005) Enterohaemorrhagic Escherichia coli: Emerging issues on virulence and modes of transmission. Vet Res 36:289–311. https://doi.org/10.1051/vetres:2005002CaprioliAMorabitoSBrugèreH2005Enterohaemorrhagic Escherichia coli: Emerging issues on virulence and modes of transmissionVet Res36289311https://doi.org/10.1051/vetres:2005002Search in Google Scholar
Carlson-Banning KM, Sperandio V (2018) Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules. Curr Opin Microbiol 41:83–88. https://doi.org/10.1016/j.mib.2017.12.002Carlson-BanningKMSperandioV2018Enterohemorrhagic Escherichia coli outwits hosts through sensing small moleculesCurr Opin Microbiol418388https://doi.org/10.1016/j.mib.2017.12.002Search in Google Scholar
Chase-Topping M, Gally D, Low C et al. (2008) Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol 6:904–912. https://doi.org/10.1038/nrmicro2029Chase-ToppingMGallyDLowC2008Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157Nat Rev Microbiol6904912https://doi.org/10.1038/nrmicro2029Search in Google Scholar
Cho S, Shin J, Cho BK (2018) Applications of CRISPR/Cas system to bacterial metabolic engineering. Int J Mol Sci 19:1089. https://doi.org/10.3390/ijms19041089ChoSShinJChoBK2018Applications of CRISPR/Cas system to bacterial metabolic engineeringInt J Mol Sci191089https://doi.org/10.3390/ijms19041089Search in Google Scholar
Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145. https://doi.org/10.1038/nbt.3011CitorikRJMimeeMLuTK2014Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleasesNat Biotechnol3211411145https://doi.org/10.1038/nbt.3011Search in Google Scholar
Compart DP, Anele U, Engel C et al. (2018) PSXIV-12 impact of prebiotic and probiotic feed additive blends on bovine respiratory disease, E. coli O157:H7 shedding, and performance of receiving steers. J Anim Sci 96(Suppl. 3):440. https://doi.org/10.1093/jas/sky404.962CompartDPAneleUEngelC2018PSXIV-12 impact of prebiotic and probiotic feed additive blends on bovine respiratory disease, E. coli O157:H7 shedding, and performance of receiving steersJ Anim Sci96Suppl. 3440https://doi.org/10.1093/jas/sky404.962Search in Google Scholar
Cordonnier C, Thévenot J, Etienne-Mesmin L et al. (2017) Probiotic and enterohemorrhagic Escherichia coli: An effective strategy against a deadly enemy? Crit Rev Microbiol 43:116–132. https://doi.org/10.1080/1040841X.2016.1185602CordonnierCThévenotJEtienne-MesminL2017Probiotic and enterohemorrhagic Escherichia coli: An effective strategy against a deadly enemy?Crit Rev Microbiol43116132https://doi.org/10.1080/1040841X.2016.1185602Search in Google Scholar
Delannoy S, Beutin L, Burgos Y et al. (2012a) Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR. J Clin Microbiol 50:3485–3492. https://doi.org/10.1128/JCM.01656-12DelannoySBeutinLBurgosY2012aSpecific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCRJ Clin Microbiol5034853492https://doi.org/10.1128/JCM.01656-12Search in Google Scholar
Delannoy S, Beutin L, Fach P (2012b) Use of clustered regularly interspaced short palindromic repeat sequence polymorphisms for specific detection of enterohemorrhagic Escherichia coli strains of serotypes O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by real-time PCR. J Clin Microbiol 50:4035–4040. https://doi.org/10.1128/JCM.02097-12DelannoySBeutinLFachP2012bUse of clustered regularly interspaced short palindromic repeat sequence polymorphisms for specific detection of enterohemorrhagic Escherichia coli strains of serotypes O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by real-time PCRJ Clin Microbiol5040354040https://doi.org/10.1128/JCM.02097-12Search in Google Scholar
Dong HA, Cui YL, Zhang DW (2021) CRISPR/Cas technologies and their applications in Escherichia coli. Front Bioeng Biotechnol 9:762676. https://doi.org/10.3389/fbioe.2021.762676DongHACuiYLZhangDW2021CRISPR/Cas technologies and their applications in Escherichia coliFront Bioeng Biotechnol9762676https://doi.org/10.3389/fbioe.2021.762676Search in Google Scholar
Ebrahimi V, Hashemi A (2020) Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Gene 753:144813. https://doi.org/10.1016/j.gene.2020.144813EbrahimiVHashemiA2020Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A reviewGene753144813https://doi.org/10.1016/j.gene.2020.144813Search in Google Scholar
Fan R, Shao K, Yang X et al. (2019) High prevalence of non-O157 Shiga toxin-producing Escherichia coli in beef cattle detected by combining four selective agars. BMC Microbiol 19:213. https://doi.org/10.1186/s12866-019-1582-8FanRShaoKYangX2019High prevalence of non-O157 Shiga toxin-producing Escherichia coli in beef cattle detected by combining four selective agarsBMC Microbiol19213https://doi.org/10.1186/s12866-019-1582-8Search in Google Scholar
Fang T, Shen J, Xue J et al. (2022) Sensitive and rapid detection of Escherichia coli O157:H7 from beef samples based on recombinase aided amplification assisted CRISPR/Cas12a system. J AOAC Int 106:156–164. https://doi.org/10.1093/jaoacint/qsac101FangTShenJXueJ2022Sensitive and rapid detection of Escherichia coli O157:H7 from beef samples based on recombinase aided amplification assisted CRISPR/Cas12a systemJ AOAC Int106156164https://doi.org/10.1093/jaoacint/qsac101Search in Google Scholar
García-Gutiérrez E, Almendros C, Mojica FJ et al. (2015) CRISPR content correlates with the pathogenic potential of Escherichia coli. PLoS One 10:e0131935. https://doi.org/10.1371/journal.pone.0131935García-GutiérrezEAlmendrosCMojicaFJ2015CRISPR content correlates with the pathogenic potential of Escherichia coliPLoS One10e0131935https://doi.org/10.1371/journal.pone.0131935Search in Google Scholar
Gardette M, Daniel J, Loukiadis E et al. (2020) Role of the nitric oxide reductase NorVW in the survival and virulence of enterohaemorrhagic Escherichia coli during infection. Pathogens 9:683. https://doi.org/10.3390/pathogens9090683GardetteMDanielJLoukiadisE2020Role of the nitric oxide reductase NorVW in the survival and virulence of enterohaemorrhagic Escherichia coli during infectionPathogens9683https://doi.org/10.3390/pathogens9090683Search in Google Scholar
Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35(Web Server issue):W52–W57. https://doi.org/10.1093/nar/gkm360GrissaIVergnaudGPourcelC2007CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeatsNucleic Acids Res35Web Server issueW52W57https://doi.org/10.1093/nar/gkm360Search in Google Scholar
Hauser JR, Atitkar RR, Petro CD et al. (2020) The virulence of Escherichia coli O157:H7 isolates in mice depends on Shiga toxin type 2a (Stx2a)-Induction and high levels of Stx2a in stool. Front Cell Infect Microbiol 10:62. https://doi.org/10.3389/fcimb.2020.00062HauserJRAtitkarRRPetroCD2020The virulence of Escherichia coli O157:H7 isolates in mice depends on Shiga toxin type 2a (Stx2a)-Induction and high levels of Stx2a in stoolFront Cell Infect Microbiol1062https://doi.org/10.3389/fcimb.2020.00062Search in Google Scholar
Hoshiga F, Yoshizaki K, Takao N et al. (2019) Modification of T2 phage infectivity toward Escherichia coli O157:H7 via using CRISPR/Cas9. FEMS Microbiol Lett 366:fnz041. https://doi.org/10.1093/femsle/fnz041HoshigaFYoshizakiKTakaoN2019Modification of T2 phage infectivity toward Escherichia coli O157:H7 via using CRISPR/Cas9FEMS Microbiol Lett366fnz041https://doi.org/10.1093/femsle/fnz041Search in Google Scholar
Hua Y, Chromek M, Frykman A et al. (2021) Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden. Virulence 12:1296–1305. https://doi.org/10.1080/21505594.2021.1922010HuaYChromekMFrykmanA2021Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in SwedenVirulence1212961305https://doi.org/10.1080/21505594.2021.1922010Search in Google Scholar
Jiang L, Yang W, Jiang X et al. (2021) Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 13:1992237. https://doi.org/10.1080/19490976.2021.1992237JiangLYangWJiangX2021Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7Gut Microbes131992237https://doi.org/10.1080/19490976.2021.1992237Search in Google Scholar
Jiang W, He C, Bai L et al. (2023) Rapid and visual method for nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a-PMNT. Foods 12:236. https://doi.org/10.3390/foods12020236JiangWHeCBaiL2023Rapid and visual method for nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a-PMNTFoods12236https://doi.org/10.3390/foods12020236Search in Google Scholar
Jiang Y, Yin S, Dudley EG et al. (2015) Diversity of CRISPR loci and virulence genes in pathogenic Escherichia coli isolates from various sources. Int J Food Microbiol 204:41–46. https://doi.org/10.1016/j.ijfoodmicro.2015.03.025JiangYYinSDudleyEG2015Diversity of CRISPR loci and virulence genes in pathogenic Escherichia coli isolates from various sourcesInt J Food Microbiol2044146https://doi.org/10.1016/j.ijfoodmicro.2015.03.025Search in Google Scholar
Jin ML, Chen JC, Zhao XY et al. (2022) An engineered lambda phage enables enhanced and strain-specific killing of enterohemorrhagic Escherichia coli. Microbiol Spectr 10:e0127122. https://doi.org/10.1128/spectrum.01271-22JinMLChenJCZhaoXY2022An engineered lambda phage enables enhanced and strain-specific killing of enterohemorrhagic Escherichia coliMicrobiol Spectr10e0127122https://doi.org/10.1128/spectrum.01271-22Search in Google Scholar
Karmali MA (2018) Factors in the emergence of serious human infections associated with highly pathogenic strains of shiga toxin-producing Escherichia coli. Int J Med Microbiol 308:1067–1072. https://doi.org/10.1016/j.ijmm.2018.08.005KarmaliMA2018Factors in the emergence of serious human infections associated with highly pathogenic strains of shiga toxin-producing Escherichia coliInt J Med Microbiol30810671072https://doi.org/10.1016/j.ijmm.2018.08.005Search in Google Scholar
Keir LS, Marks SD, Kim JJ (2012) Shiga toxin-associated hemolytic uremic syndrome: Current molecular mechanisms and future therapies. Drug Des Devel Ther 6:195–208. https://doi.org/10.2147/DDDT.S25757KeirLSMarksSDKimJJ2012Shiga toxin-associated hemolytic uremic syndrome: Current molecular mechanisms and future therapiesDrug Des Devel Ther6195208https://doi.org/10.2147/DDDT.S25757Search in Google Scholar
Kim M, Kim J, Kuehn LA et al. (2014) Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci 92:683–694. https://doi.org/10.2527/jas.2013-6841KimMKimJKuehnLA2014Investigation of bacterial diversity in the feces of cattle fed different dietsJ Anim Sci92683694https://doi.org/10.2527/jas.2013-6841Search in Google Scholar
Kim M, Kuehn LA, Bono JL et al. (2017a) The impact of the bovine faecal microbiome on Escherichia coli O157:H7 prevalence and enumeration in naturally infected cattle. J Appl Microbiol 123:1027–1042. https://doi.org/10.1111/jam.13545KimMKuehnLABonoJL2017aThe impact of the bovine faecal microbiome on Escherichia coli O157:H7 prevalence and enumeration in naturally infected cattleJ Appl Microbiol12310271042https://doi.org/10.1111/jam.13545Search in Google Scholar
Kim SA, Park SH, Lee SI et al. (2017b) Rapid and simple method by combining FTA (TM) card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samples. Lett Appl Microbiol 65:482–488. https://doi.org/10.1111/lam.12805KimSAParkSHLeeSI2017bRapid and simple method by combining FTA (TM) card DNA extraction with two set multiplex PCR for simultaneous detection of non-O157 Shiga toxin-producing Escherichia coli strains and virulence genes in food samplesLett Appl Microbiol65482488https://doi.org/10.1111/lam.12805Search in Google Scholar
Kim U, Lee SY, Oh SW (2023) Thermophilic helicase-dependent amplification-based CRISPR/Cas12a system: Detection of stx2 in Escherichia coli O157:H7 by controlling primer dimers. Anal Chim Acta 1239:340679. https://doi.org/10.1016/j.aca.2022.340679KimULeeSYOhSW2023Thermophilic helicase-dependent amplification-based CRISPR/Cas12a system: Detection of stx2 in Escherichia coli O157:H7 by controlling primer dimersAnal Chim Acta1239340679https://doi.org/10.1016/j.aca.2022.340679Search in Google Scholar
Kolodziejek AM, Minnich SA, Hovde CJ (2022) Escherichia coli 0157:H7 virulence factors and the ruminant reservoir. Curr Opin Infect Dis 35:205–214. https://doi.org/10.1097/QCO.0000000000000834KolodziejekAMMinnichSAHovdeCJ2022Escherichia coli 0157:H7 virulence factors and the ruminant reservoirCurr Opin Infect Dis35205214https://doi.org/10.1097/QCO.0000000000000834Search in Google Scholar
König E, Zerbini F, Zanella I et al. (2018) Multiple stepwise gene knockout using CRISPR/Cas9 in Escherichia coli. Bio Protoc 8:e2688. https://doi.org/10.21769/BioProtoc.2688KönigEZerbiniFZanellaI2018Multiple stepwise gene knockout using CRISPR/Cas9 in Escherichia coliBio Protoc8e2688https://doi.org/10.21769/BioProtoc.2688Search in Google Scholar
Larzábal M, Da Silva WM, Multani A et al. (2020) Early immune innate hallmarks and microbiome changes across the gut during Escherichia coli O157: H7 infection in cattle. Sci Rep 10:21535. https://doi.org/10.1038/s41598-020-78752-xLarzábalMDa SilvaWMMultaniA2020Early immune innate hallmarks and microbiome changes across the gut during Escherichia coli O157: H7 infection in cattleSci Rep1021535https://doi.org/10.1038/s41598-020-78752-xSearch in Google Scholar
Lee HJ, Lee SJ (2021) Advances in accurate microbial genome-editing CRISPR technologies. J Microbiol Biotechnol 31:903–911. https://doi.org/10.4014/jmb.2106.06056LeeHJLeeSJ2021Advances in accurate microbial genome-editing CRISPR technologiesJ Microbiol Biotechnol31903911https://doi.org/10.4014/jmb.2106.06056Search in Google Scholar
Lee KS, Jeong YJ, Lee MS (2021) Escherichia coli Shiga toxins and gut microbiota interactions. Toxins (Basel) 13:416. https://doi.org/10.3390/toxins13060416LeeKSJeongYJLeeMS2021Escherichia coli Shiga toxins and gut microbiota interactionsToxins (Basel)13416https://doi.org/10.3390/toxins13060416Search in Google Scholar
Lee SY, Oh SW (2022) Filtration-based LAMP-CRISPR/Cas12a system for the rapid, sensitive and visualized detection of Escherichia coli O157:H7. Talanta 241:123186. https://doi.org/10.1016/j.talanta.2021.123186LeeSYOhSW2022Filtration-based LAMP-CRISPR/Cas12a system for the rapid, sensitive and visualized detection of Escherichia coli O157:H7Talanta241123186https://doi.org/10.1016/j.talanta.2021.123186Search in Google Scholar
Lim JY, Yoon JW, Hovde CJ (2010) A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 20: 5–14. https://doi.org/10.4014/jmb.0908.08007LimJYYoonJWHovdeCJ2010A brief overview of Escherichia coli O157:H7 and its plasmid O157J Microbiol Biotechnol20514https://doi.org/10.4014/jmb.0908.08007Search in Google Scholar
Liu Y, Liu B, Yang P et al. (2019) LysR-type transcriptional regulator OvrB encoded in O island 9 drives enterohemorrhagic Escherichia coli O157:H7 virulence. Virulence 10:783–792. https://doi.org/10.1080/21505594.2019.1661721LiuYLiuBYangP2019LysR-type transcriptional regulator OvrB encoded in O island 9 drives enterohemorrhagic Escherichia coli O157:H7 virulenceVirulence10783792https://doi.org/10.1080/21505594.2019.1661721Search in Google Scholar
Liu Z, Dong H, Cui Y et al. (2020) Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact 19:172. https://doi.org/10.1186/s12934-020-01431-zLiuZDongHCuiY2020Application of different types of CRISPR/Cas-based systems in bacteriaMicrob Cell Fact19172https://doi.org/10.1186/s12934-020-01431-zSearch in Google Scholar
Long J, Xu Y, Ou L et al. (2019) Polymorphism of Type I-F CRISPR/Cas system in Escherichia coli of phylogenetic group B2 and its application in genotyping. Infect Genet Evol 74:103916. https://doi.org/10.1016/j.meegid.2019.103916LongJXuYOuL2019Polymorphism of Type I-F CRISPR/Cas system in Escherichia coli of phylogenetic group B2 and its application in genotypingInfect Genet Evol74103916https://doi.org/10.1016/j.meegid.2019.103916Search in Google Scholar
Luo J, Xu D, Wang J et al. (2024) Dual-mode platform for the rapid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a and RPA. Anal Bioanal Chem 416:3509–3518. https://doi.org/10.1007/s00216-024-05301-0LuoJXuDWangJ2024Dual-mode platform for the rapid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a and RPAAnal Bioanal Chem41635093518https://doi.org/10.1007/s00216-024-05301-0Search in Google Scholar
Makarova KS, Wolf YI, Iranzo J et al. (2020) Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83. https://doi.org/10.1038/s41579-019-0299-xMakarovaKSWolfYIIranzoJ2020Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variantsNat Rev Microbiol186783https://doi.org/10.1038/s41579-019-0299-xSearch in Google Scholar
Mao S, Zhang M, Liu J et al. (2015) Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Sci Rep 5:16116. https://doi.org/10.1038/srep16116MaoSZhangMLiuJ2015Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential functionSci Rep516116https://doi.org/10.1038/srep16116Search in Google Scholar
Mellmann A, Bielaszewska M, Köck R et al. (2008) Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg Infect Dis 14:1287–1290. https://doi.org/10.3201/eid1408.071082MellmannABielaszewskaMKöckR2008Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coliEmerg Infect Dis1412871290https://doi.org/10.3201/eid1408.071082Search in Google Scholar
Mir RA, Schaut RG, Looft T et al. (2020) Recto-Anal Junction (RAJ) and fecal microbiomes of cattle experimentally challenged with Escherichia coli O157:H7. Front Microbiol 11:693. https://doi.org/10.3389/fmicb.2020.00693MirRASchautRGLooftT2020Recto-Anal Junction (RAJ) and fecal microbiomes of cattle experimentally challenged with Escherichia coli O157:H7Front Microbiol11693https://doi.org/10.3389/fmicb.2020.00693Search in Google Scholar
Mir RA, Weppelmann TA, Elzo M et al. (2016) Colonization of beef cattle by shiga toxin-producing Escherichia coli during the first year of life: A cohort study. PLoS One 11:e0148518. https://doi.org/10.1371/journal.pone.0148518MirRAWeppelmannTAElzoM2016Colonization of beef cattle by shiga toxin-producing Escherichia coli during the first year of life: A cohort studyPLoS One11e0148518https://doi.org/10.1371/journal.pone.0148518Search in Google Scholar
Mojica FJ, Díez-Villaseñor C, García-Martínez J et al. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. https://doi.org/10.1007/s00239-004-0046-3MojicaFJDíez-VillaseñorCGarcía-MartínezJ2005Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elementsJ Mol Evol60174182https://doi.org/10.1007/s00239-004-0046-3Search in Google Scholar
Mojica FJM, Díez-Villaseñor C, García-Martínez J et al. (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Reading) 155:733–740. https://doi.org/10.1099/mic.0.023960-0MojicaFJMDíez-VillaseñorCGarcía-MartínezJ2009Short motif sequences determine the targets of the prokaryotic CRISPR defence systemMicrobiology (Reading)155733740https://doi.org/10.1099/mic.0.023960-0Search in Google Scholar
Montero DA, Velasco J, Del Canto F et al. (2017) Locus of adhesion and autoaggregation (LAA), a pathogenicity island present in emerging Shiga toxin-producing Escherichia coli strains. Sci Rep 7:7011. https://doi.org/10.1038/s41598-017-06999-yMonteroDAVelascoJDel CantoF2017Locus of adhesion and autoaggregation (LAA), a pathogenicity island present in emerging Shiga toxin-producing Escherichia coli strainsSci Rep77011https://doi.org/10.1038/s41598-017-06999-ySearch in Google Scholar
Nawrocki EM, Mosso HM, Dudley EG (2020) A toxic environment: A growing understanding of how microbial communities affect Escherichia coli O157:H7 Shiga toxin expression. Appl Environ Microbiol 86:e509–e520. https://doi.org/10.1128/AEM.00509-20NawrockiEMMossoHMDudleyEG2020A toxic environment: A growing understanding of how microbial communities affect Escherichia coli O157:H7 Shiga toxin expressionAppl Environ Microbiol86e509e520https://doi.org/10.1128/AEM.00509-20Search in Google Scholar
Neil K, Allard N, Grenier F et al. (2020) Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl(2) conjugative plasmid TP114. Commun Biol 3:523. https://doi.org/10.1038/s42003-020-01253-0NeilKAllardNGrenierF2020Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl(2) conjugative plasmid TP114Commun Biol3523https://doi.org/10.1038/s42003-020-01253-0Search in Google Scholar
Neil K, Allard N, Rodrigue S (2021) Molecular mechanisms influencing bacterial conjugation in the intestinal microbiota. Front Microbiol 12:673260. https://doi.org/10.3389/fmicb.2021.673260NeilKAllardNRodrigueS2021Molecular mechanisms influencing bacterial conjugation in the intestinal microbiotaFront Microbiol12673260https://doi.org/10.3389/fmicb.2021.673260Search in Google Scholar
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014): Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156: 935–49. doi: 10.1016/j.cell.2014.02.001NishimasuHRanFAHsuPDKonermannSShehataSIDohmaeNIshitaniRZhangFNurekiO2014Crystal structure of Cas9 in complex with guide RNA and target DNACell1569354910.1016/j.cell.2014.02.001Open DOISearch in Google Scholar
Ogura Y, Ooka T, Iguchi A et al. (2009) Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A 106:17939–17944. https://doi.org/10.1073/pnas.0903585106OguraYOokaTIguchiA2009Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coliProc Natl Acad Sci U S A1061793917944https://doi.org/10.1073/pnas.0903585106Search in Google Scholar
Ogura Y, Seto K, Morimoto Y et al. (2018) Genomic characterization of beta-glucuronidase-positive Escherichia coli O157:H7 producing Stx2a. Emerg Infect Dis 24:2219–2227. https://doi.org/10.3201/eid2412.180404OguraYSetoKMorimotoY2018Genomic characterization of beta-glucuronidase-positive Escherichia coli O157:H7 producing Stx2aEmerg Infect Dis2422192227https://doi.org/10.3201/eid2412.180404Search in Google Scholar
Pacheco AR, Lazarus JE, Sit B et al. (2018) CRISPR screen reveals that EHEC’s T3SS and Shiga toxin rely on shared host factors for infection. mBio 9:e1003–e1018. https://doi.org/10.1128/mBio.01003-18PachecoARLazarusJESitB2018CRISPR screen reveals that EHEC’s T3SS and Shiga toxin rely on shared host factors for infectionmBio9e1003e1018https://doi.org/10.1128/mBio.01003-18Search in Google Scholar
Pawluk A, Davidson AR, Maxwell KL (2018) Anti-CRISPR: Discovery, mechanism and function. Nat Rev Microbiol 16:12–17. https://doi.org/10.1038/nrmicro.2017.120PawlukADavidsonARMaxwellKL2018Anti-CRISPR: Discovery, mechanism and functionNat Rev Microbiol161217https://doi.org/10.1038/nrmicro.2017.120Search in Google Scholar
Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading) 151:653–663. https://doi.org/10.1099/mic.0.27437-0PourcelCSalvignolGVergnaudG2005CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studiesMicrobiology (Reading)151653663https://doi.org/10.1099/mic.0.27437-0Search in Google Scholar
Puligundla P, Lim S (2022) Biocontrol approaches against Escherichia coli O157:H7 in foods. Foods 11:756. https://doi.org/10.3390/foods11050756PuligundlaPLimS2022Biocontrol approaches against Escherichia coli O157:H7 in foodsFoods11756https://doi.org/10.3390/foods11050756Search in Google Scholar
Rath D, Amlinger L, Rath A et al. (2015) The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie 117:119–128. https://doi.org/10.1016/j.biochi.2015.03.025RathDAmlingerLRathA2015The CRISPR-Cas immune system: Biology, mechanisms and applicationsBiochimie117119128https://doi.org/10.1016/j.biochi.2015.03.025Search in Google Scholar
Salaheen S, Kim SW, Karns JS et al. (2019) Metagenomic analysis of the fecal microbiomes from Escherichia coli O157:H7-shedding and non-shedding cows on a single dairy farm. Food Control 102:76–80. https://doi.org/10.1016/j.foodcont.2019.03.022SalaheenSKimSWKarnsJS2019Metagenomic analysis of the fecal microbiomes from Escherichia coli O157:H7-shedding and non-shedding cows on a single dairy farmFood Control1027680https://doi.org/10.1016/j.foodcont.2019.03.022Search in Google Scholar
Santos AS, Finlay BB (2015) Bringing down the host: Enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways. Cell Microbiol 17:318–332. https://doi.org/10.1111/cmi.12412SantosASFinlayBB2015Bringing down the host: Enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathwaysCell Microbiol17318332https://doi.org/10.1111/cmi.12412Search in Google Scholar
Sauder AB, Kendall MM (2018) After the Fact(or): Posttranscriptional gene regulation in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 200:e228–e218. https://doi.org/10.1128/JB.00228-18SauderABKendallMM2018After the Fact(or): Posttranscriptional gene regulation in enterohemorrhagic Escherichia coli O157:H7J Bacteriol200e228e218https://doi.org/10.1128/JB.00228-18Search in Google Scholar
Schuller S (2011) Shiga toxin interaction with human intestinal epithelium. Toxins (Basel) 3:626–639. https://doi.org/10.3390/toxins3060626SchullerS2011Shiga toxin interaction with human intestinal epitheliumToxins (Basel)3626639https://doi.org/10.3390/toxins3060626Search in Google Scholar
Sheng H, Knecht HJ, Kudva IT et al. (2006) Application of bacteriophages to control intestinal Escherichia coli O157: H7 levels in ruminants. Appl Environ Microbiol 72:5359–5366. https://doi.org/10.1128/AEM.00099-06ShengHKnechtHJKudvaIT2006Application of bacteriophages to control intestinal Escherichia coli O157: H7 levels in ruminantsAppl Environ Microbiol7253595366https://doi.org/10.1128/AEM.00099-06Search in Google Scholar
Sheng H, Wu S, Xue Y et al. (2023) Engineering conjugative CRISPR-Cas9 systems for the targeted control of enteric pathogens and antibiotic resistance. PLoS One 18:e0291520. https://doi.org/10.1371/journal.pone.0291520ShengHWuSXueY2023Engineering conjugative CRISPR-Cas9 systems for the targeted control of enteric pathogens and antibiotic resistancePLoS One18e0291520https://doi.org/10.1371/journal.pone.0291520Search in Google Scholar
Shringi S, Sheng H, Potter AA et al. (2021) Repeated oral vaccination of cattle with shiga toxin-negative Escherichia coli O157:H7 reduces carriage of wild-type E. coli O157:H7 after challenge. Appl Environ Microbiol 87:e2183–e2120. https://doi.org/10.1128/AEM.02183-20ShringiSShengHPotterAA2021Repeated oral vaccination of cattle with shiga toxin-negative Escherichia coli O157:H7 reduces carriage of wild-type E. coli O157:H7 after challengeAppl Environ Microbiol87e2183e2120https://doi.org/10.1128/AEM.02183-20Search in Google Scholar
Song D, Han X, Xu W et al. (2023) Target nucleic acid amplification-free detection of Escherichia coli O157:H7 by CRISPR/Cas12a and hybridization chain reaction based on an evanescent wave fluorescence biosensor. Sens Actuators B: Chem 376:133005. https://doi.org/10.1016/j.snb.2022.133005SongDHanXXuW2023Target nucleic acid amplification-free detection of Escherichia coli O157:H7 by CRISPR/Cas12a and hybridization chain reaction based on an evanescent wave fluorescence biosensorSens Actuators B: Chem376133005https://doi.org/10.1016/j.snb.2022.133005Search in Google Scholar
Sorek R, Kunin V, Hugenholtz P (2008) CRISPR – A widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186. https://doi.org/10.1038/nrmicro1793SorekRKuninVHugenholtzP2008CRISPR – A widespread system that provides acquired resistance against phages in bacteria and archaeaNat Rev Microbiol6181186https://doi.org/10.1038/nrmicro1793Search in Google Scholar
Soysal N, Mariani-Kurkdjian P, Smail Y et al. (2016) Enterohemorrhagic Escherichia coli hybrid pathotype O80:H2 as a new therapeutic challenge. Emerg Infect Dis 22:1604–1612. https://doi.org/10.3201/eid2209.160304SoysalNMariani-KurkdjianPSmailY2016Enterohemorrhagic Escherichia coli hybrid pathotype O80:H2 as a new therapeutic challengeEmerg Infect Dis2216041612https://doi.org/10.3201/eid2209.160304Search in Google Scholar
Spano LC, Guerrieri CG, Volpini LPB et al. (2021) EHEC O111:H8 strain and norovirus GII.4 Sydney P16 causing an outbreak in a daycare center, Brazil, 2019. BMC Microbiol 21:95. https://doi.org/10.1186/s12866-021-02161-xSpanoLCGuerrieriCGVolpiniLPB2021EHEC O111:H8 strain and norovirus GII.4 Sydney P16 causing an outbreak in a daycare center, Brazil, 2019BMC Microbiol2195https://doi.org/10.1186/s12866-021-02161-xSearch in Google Scholar
Sperandio V (2010) SdiA sensing of acyl-homoserine lactones by enterohemorrhagic E. coli (EHEC) serotype O157:H7 in the bovine rumen. Gut Microbes 1:432–435. https://doi.org/10.4161/gmic.1.6.14177SperandioV2010SdiA sensing of acyl-homoserine lactones by enterohemorrhagic E. coli (EHEC) serotype O157:H7 in the bovine rumenGut Microbes1432435https://doi.org/10.4161/gmic.1.6.14177Search in Google Scholar
Sperandio V, Hovde C (2015) Enterohemorrhagic Escherichia coli and other Shiga-toxin-producing E. coli. ASM Press, Washington DC. https://doi.org/10.1086/686851SperandioVHovdeC2015Enterohemorrhagic Escherichia coli and other Shiga-toxin-producing E. coliASM PressWashington DChttps://doi.org/10.1086/686851Search in Google Scholar
Stenkamp-Strahm C, McConnel C, Magzamen S et al. (2018) Associations between Escherichia coli O157 shedding and the faecal microbiota of dairy cows. J Appl Microbiol 124:881–898. https://doi.org/10.1111/jam.13679Stenkamp-StrahmCMcConnelCMagzamenS2018Associations between Escherichia coli O157 shedding and the faecal microbiota of dairy cowsJ Appl Microbiol124881898https://doi.org/10.1111/jam.13679Search in Google Scholar
Tahoun A, El-Sharkawy H, Moustafa SM et al. (2021) Mitotic arrest-deficient 2 like 2 (MAD2L2) interacts with Escherichia coli effector protein EspF. Life (Basel) 11:971. https://doi.org/10.3390/life11090971TahounAEl-SharkawyHMoustafaSM2021Mitotic arrest-deficient 2 like 2 (MAD2L2) interacts with Escherichia coli effector protein EspFLife (Basel)11971https://doi.org/10.3390/life11090971Search in Google Scholar
Tamminen LM, Söderlund R, Wilkinson DA et al. (2019) Risk factors and dynamics of verotoxigenic Escherichia coli O157:H7 on cattle farms: An observational study combining information from questionnaires, spatial data and molecular analyses. Prev Vet Med 170:104726. https://doi.org/10.1016/j.prevetmed.2019.104726TamminenLMSöderlundRWilkinsonDA2019Risk factors and dynamics of verotoxigenic Escherichia coli O157:H7 on cattle farms: An observational study combining information from questionnaires, spatial data and molecular analysesPrev Vet Med170104726https://doi.org/10.1016/j.prevetmed.2019.104726Search in Google Scholar
van Houte S, Ekroth AK, Broniewski JM et al. (2016) The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532:385–388. https://doi.org/10.1038/nature17436van HouteSEkrothAKBroniewskiJM2016The diversity-generating benefits of a prokaryotic adaptive immune systemNature532385388https://doi.org/10.1038/nature17436Search in Google Scholar
Vasco K, Nohomovich B, Singh P et al. (2021) Characterizing the cattle gut microbiome in farms with a high and low prevalence of shiga toxin producing Escherichia coli. Microorganisms 9:1737. https://doi.org/10.3390/microorganisms9081737VascoKNohomovichBSinghP2021Characterizing the cattle gut microbiome in farms with a high and low prevalence of shiga toxin producing Escherichia coliMicroorganisms91737https://doi.org/10.3390/microorganisms9081737Search in Google Scholar
Virolle C, Goldlust K, Djermoun S et al. (2020) Plasmid transfer by conjugation in gram-negative bacteria: From the cellular to the community level. Genes (Basel) 11:1239. https://doi.org/10.3390/genes11111239VirolleCGoldlustKDjermounS2020Plasmid transfer by conjugation in gram-negative bacteria: From the cellular to the community levelGenes (Basel)111239https://doi.org/10.3390/genes11111239Search in Google Scholar
Wang O, McAllister TA, Plastow G et al. (2018) Interactions of the hindgut mucosa-associated microbiome with its host regulate shedding of Escherichia coli O157:H7 by cattle. Appl Environ Microbiol 84:e1738–e1717. https://doi.org/10.1128/AEM.01738-17WangOMcAllisterTAPlastowG2018Interactions of the hindgut mucosa-associated microbiome with its host regulate shedding of Escherichia coli O157:H7 by cattleAppl Environ Microbiol84e1738e1717https://doi.org/10.1128/AEM.01738-17Search in Google Scholar
Wang S, Fan Y, Feng Z et al. (2021) Rapid nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a system. Food Control 130:108194. https://doi.org/10.1016/j.foodcont.2021.108194WangSFanYFengZ2021Rapid nucleic acid detection of Escherichia coli O157:H7 based on CRISPR/Cas12a systemFood Control130108194https://doi.org/10.1016/j.foodcont.2021.108194Search in Google Scholar
Wang Z, Chen H, Hu A et al. (2024) Establishment of LAMP-CRISPR/Cas12a for rapid detection of Escherichia coli O157:H7 and one-pot detection. Food Microbiol 124:104622. https://doi.org/10.1016/j.fm.2024.104622WangZChenHHuA2024Establishment of LAMP-CRISPR/Cas12a for rapid detection of Escherichia coli O157:H7 and one-pot detectionFood Microbiol124104622https://doi.org/10.1016/j.fm.2024.104622Search in Google Scholar
Warr AR, Hubbard TP, Munera D et al. (2019) Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog 15:e1007652. https://doi.org/10.1371/journal.ppat.1007652WarrARHubbardTPMuneraD2019Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonizationPLoS Pathog15e1007652https://doi.org/10.1371/journal.ppat.1007652Search in Google Scholar
Wells JE, Berry ED, Kim M et al. (2017) Evaluation of commercial β-agonists, dietary protein, and shade on fecal shedding of Escherichia coli O157:H7 from feedlot cattle. Foodborne Pathog Dis 14:649–655. https://doi.org/10.1089/fpd.2017.2313WellsJEBerryEDKimM2017Evaluation of commercial β-agonists, dietary protein, and shade on fecal shedding of Escherichia coli O157:H7 from feedlot cattleFoodborne Pathog Dis14649655https://doi.org/10.1089/fpd.2017.2313Search in Google Scholar
Wells JE, Kim M, Bono JL et al. (2014) MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Escherichia coli O157:H7, diet, and fecal microbiome in beef cattle. J Anim Sci 92:1345–1355. https://doi.org/10.2527/jas.2013-7282WellsJEKimMBonoJL2014MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Escherichia coli O157:H7, diet, and fecal microbiome in beef cattleJ Anim Sci9213451355https://doi.org/10.2527/jas.2013-7282Search in Google Scholar
Won MY, Oyama LB, Courtney SJ et al. (2020) Can rumen bacteria communicate to each other? Microbiome 8:23. https://doi.org/10.1186/s40168-020-00796-yWonMYOyamaLBCourtneySJ2020Can rumen bacteria communicate to each other?Microbiome823https://doi.org/10.1186/s40168-020-00796-ySearch in Google Scholar
Xu Y, Dugat-Bony E, Zaheer R et al. (2014) Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communities. PLoS One 9:e98115. https://doi.org/10.1371/journal.pone.0098115XuYDugat-BonyEZaheerR2014Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communitiesPLoS One9e98115https://doi.org/10.1371/journal.pone.0098115Search in Google Scholar
Zaheer R, Dugat-Bony E, Holman DB et al. (2017) Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine. PLoS One 12:e0170050. https://doi.org/10.1371/journal.pone.0170050ZaheerRDugat-BonyEHolmanDB2017Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestinePLoS One12e0170050https://doi.org/10.1371/journal.pone.0170050Search in Google Scholar
Zetsche B, Gootenberg JS, Abudayyeh OO et al. (2015) Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038ZetscheBGootenbergJSAbudayyehOO2015Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas systemCell163759771https://doi.org/10.1016/j.cell.2015.09.038Search in Google Scholar
Zhao L, Tyler PJ, Starnes J et al. (2013) Correlation analysis of Shiga toxin-producing Escherichia coli shedding and faecal bacterial composition in beef cattle. J Appl Microbiol 115:591–603. https://doi.org/10.1111/jam.12250ZhaoLTylerPJStarnesJ2013Correlation analysis of Shiga toxin-producing Escherichia coli shedding and faecal bacterial composition in beef cattleJ Appl Microbiol115591603https://doi.org/10.1111/jam.12250Search in Google Scholar
Zhu L, Liang Z, Xu Y et al. (2023) Ultrasensitive and rapid visual detection of Escherichia coli O157:H7 based on RAA-CRISPR/Cas12a system. Biosensors (Basel) 13:659. https://doi.org/10.3390/bios13060659ZhuLLiangZXuY2023Ultrasensitive and rapid visual detection of Escherichia coli O157:H7 based on RAA-CRISPR/Cas12a systemBiosensors (Basel)13659https://doi.org/10.3390/bios13060659Search in Google Scholar
Zhu X, Wu Y, Lv X et al. (2022) Combining CRISPR-Cpf1 and recombineering facilitates fast and efficient genome editing in Escherichia coli. ACS Synth Biol 11:1897–1907. https://doi.org/10.1021/acssynbio.2c00041ZhuXWuYLvX2022Combining CRISPR-Cpf1 and recombineering facilitates fast and efficient genome editing in Escherichia coliACS Synth Biol1118971907https://doi.org/10.1021/acssynbio.2c00041Search in Google Scholar
Zumbrun SD, Melton-Celsa AR, Smith MA et al. (2013) Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease. Proc Natl Acad Sci U S A 110:E2126–E2133. https://doi.org/10.1073/pnas.1222014110ZumbrunSDMelton-CelsaARSmithMA2013Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and diseaseProc Natl Acad Sci U S A110E2126E2133https://doi.org/10.1073/pnas.1222014110Search in Google Scholar