À propos de cet article

Citez

Figure 1

Most common sources of PFAS in the environment
Most common sources of PFAS in the environment

Figure 2

Chemical structure of some common long- and short-chain PFAS. PFOA – perfluorooctanoic acid (long-chain); PFOS – perfluorooctane sulphonate (long-chain); PFBS – perfluorobutane sulphonate (short-chain); PFBA – perfluorobutanoic acid (short-chain); GenX – hexafluoropropylene oxide dimer acid; PFHxS –1-chloro perfluorohexane sulphonate
Chemical structure of some common long- and short-chain PFAS. PFOA – perfluorooctanoic acid (long-chain); PFOS – perfluorooctane sulphonate (long-chain); PFBS – perfluorobutane sulphonate (short-chain); PFBA – perfluorobutanoic acid (short-chain); GenX – hexafluoropropylene oxide dimer acid; PFHxS –1-chloro perfluorohexane sulphonate

Figure 3

PFAS transport across different ecosystems
PFAS transport across different ecosystems

Impact of PFAS and its compounds on aquatic and soil microbes

Microbes/Genus Response to PFAS exposure PFAS compound References
Sediminibacterium, Opitutus, Luteolibacter, Microcystis Increase PFAS 48
Photobacterium phosphoreum Increase PFCA, PFOS, PFOA 58, 61
Actinobacteria and Bacteriodetes Decrease PFAS 106
Verrucomicrobia and Proteobacteria Increase PFAS 106
Proteobacteria and Chloroflexi Decrease PFOS 62
Desulfococcus and GOUTA19 Abundant/ Increase PFAS, PFOS, PFOA 77, 79

Impact of PFAS on soil microbial communities and associated biogeochemical cycles

PFAS Impact on population Bacteria groups impacted Potential nutrient cycle associated References
PFOS Increase Bacteriodetes Nitrogen cycle 34, 94, 127
PFOS/PFOA Increase Alphaproteobacteria Nitrogen cycle, Sulphur cycle, carbon cycle 5, 75,
PFOA, PFOS Increase Gammaproteobacteria Nitrogen cycle 5, 75, 126
PFOA, PFOS Increase Acidobacteria Carbon cycle, nitrogen cycle 5, 34, 75, 127, 128
PFOS Increase Firmicutes Nitrogen cycle 75, 129, 130
PFOA, PFOS Increase/Decrease Chloroflexi Sulphur cycle 5, 34, 75, 127, 131
PFOS, PFOA Increase/Decrease Actinobacteria Nitrogen cycle 5, 75
PFAS Decrease Thermoleophilia Sulphur cycle 5
PFOS, PFAS Decrease Deltaproteobacteria Sulphur cycle 5, 75

Microbial species and mechanisms by which they biodegrade PFAS

Bacterial species Biodegradation mechanism PFAS References
Acidimicrobium sp. S. A6 Defluorination PFOA, PFOS 124
Synechocytis sp. PCC 6803 Decarboxylation, 2x reductive & oxidative defluorination, trifluoromethyl loss PFOA, PFOS 132
Pseudomonas parafulva S. YAB1 Decarboxylation PFOA 133
Pseudomonas aeruginosa S.HJ4 C-C bond cleavage PFOS 10
Pseudomonas plecoglossicida 2.4-D Decarboxylation, desulphonation PFOS 134
Gordonia sp. S. NB4-1Y Desulphonation FTSA, FTAB 135
Mycobacterium vaccae Dechlorination FTOH 136

Polymeric and non-polymeric PFAS classification and examples (7, 11)

Perfluoroalkyl Substances (PerFASs) Acronym Formula Examples
Non-polymeric PFAS Perfluoroalkyl acids PFAAs CnF2n+1R PFHxS, PFOA
Perfluoroalakane sulphonates PFSAs CnF2n+1SO3- PFOS
Perfluorocarboxylic acids PFCAs CnF2n+1COO- C8-PFPA
Perfluoroalkyl phosphonic acids PFPAs CnF2n+1(O)P(OH)O- C8-PFPiA
Perfluoroalkane sulphonamides FASA CnF2n+1SO2NH2 FOSA
Perfluoroalkyl ether acids PFEAs CnF2n+1O-CmF2m+1 GenX
Perfluoroalkyl sulphonamideotic acids FASAAs CnF2n+1SO2NHCH2COOH FOSE, MeFOSA
Polyfluoroalkyl Substances (PolyFASs)
Fluorotelomer alcohols FT CnF2n+ 1CH2CH2OH FTO
Polyfluoroalkyl phosphoric acid esters PAPs (O)P(OH)3-X(OCH2CH2CnF2n+1)x diPAP
Fluorortelomer saturated aldehydes FTALs CnF2n+1CH2CHO 8:2 FTAL
Fluorotelomer unsaturated aldehydes FTUALs CnF2n+1CF=CHCHO 4,8-Dioxa-3H-perfluorononoate
Polymeric PFAAS Fluoropolymers FPs PFTE
Perfluoropolyethers PFPEs HOCH2O-(CmF2mO)n-CH2OH PFPE-BP
Side-chain fluorinated aromatics sc-F CnF2n+1-aromatic rings Fluoriated methacrylate
eISSN:
1848-6312
Langues:
Anglais, Slovenian
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Basic Medical Science, other