Accès libre

Content of adsorbed film water and density of oxygen-containing functional groups on surface of ageing biochar in sandy spodosol

À propos de cet article

Citez

Baiamonte, G., Crescimanno, G., Parrino, F., & De Pasquale, C. (2019). Effect of biochar on the physical and structural properties of a sandy soil. Catena,175, 294–303. https://doi.org/10.1016/j.catena.2018.12.01910.1016/j.catena.2018.12.019 Search in Google Scholar

Balashov, E., Buchkina, N., Šimanský, V., & Horák, J. (2021). Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of two soils with high water-filled pore space. Journal of Hydrology and Hydromechanics, 69(4), 467–474. https://doi.org/10.2478/johh-2021-002410.2478/johh-2021-0024 Search in Google Scholar

Banik, C., Lawrinenko, M., Bakshi, S., & Laird, D. A. (2018). Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. Journal of Environmental Quality, 47(3), 452–461. https://doi.org/10.2134/jeq2017.11.043210.2134/jeq2017.11.043229864182 Search in Google Scholar

Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing water-holding capacity of sandy soils. Gcb Bioenergy, 5(2), 132–143. https://doi.org/10.1111/gcbb.1202610.1111/gcbb.12026 Search in Google Scholar

Brennan, J. K., Bandosz, T. J., Thomson, K. T., & Gubbins, K. E. (2001). Water in porous carbons. Colloids and surfaces A: Physicochemical and engineering aspects, 187, 539–568. https://doi.org/10.1016/S0927-7757(01)00644-610.1016/S0927-7757(01)00644-6 Search in Google Scholar

Clough, T. J., Bertram, J. E., Ray, J. L., Condron, L. M., O‘callaghan, M., Sherlock, R. R., & Wells, N. (2010). Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Science Society of America, 74(3), 852–860. https://doi.org/10.2136/sssaj2009.018510.2136/sssaj2009.0185 Search in Google Scholar

Das, S. K., Ghosh, & G. K., Avasthe, R. (2021). Applications of biomass derived biochar in modern science and technology. Environmental Technology & Innovation, 21, 101306. https://doi.org/10.1016/j.eti.2020.10130610.1016/j.eti.2020.101306 Search in Google Scholar

de la Rosa, J. M., Rosado, M., Paneque, M., Miller, A. Z., & Knicker, H. (2018). Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Science of the Total Environment, 613, 969–976. https://doi.org/10.1016/j.scitotenv.2017.09.12410.1016/j.scitotenv.2017.09.12428946384 Search in Google Scholar

Dempster, D. N., Gleeson, D. B., Solaiman, Z. I., Jones, D. L., & Murphy, D. V. (2012). Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 354(1), 311–324. https://doi.org/10.1007/s11104-011-1067-510.1007/s11104-011-1067-5 Search in Google Scholar

El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., Zimmermann, A. R., Ahmad, M., Shaheen, S. M., & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554. https://doi.org/10.1016/j.geoderma.2018.09.03410.1016/j.geoderma.2018.09.034 Search in Google Scholar

Güereña, D., Lehmann, J., Hanley, K., Enders, A., Hyland, C., & Riha, S. (2013). Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant and Soil, 365(1), 239–254. https://doi.org/10.1007/s11104-012-1383-410.1007/s11104-012-1383-4 Search in Google Scholar

Guo, J., Zheng, L., Li, Z., Zhou, X., Cheng, S., Zhang, L., & Zhang, Q. (2021). Effects of various pyrolysis conditions and feedstock compositions on the physicochemical characteristics of cow manure-derived biochar. Journal of Cleaner Production, 311, 127458. https://doi.org/10.1016/j.jclepro.2021.12745810.1016/j.jclepro.2021.127458 Search in Google Scholar

Haider, G., Steffens, D., Moser, G., Müller, C., & Kammann, C. I. (2017). Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agriculture, Ecosystems & Environment, 237, 80–94. https://doi.org/10.1016/j.agee.2016.12.01910.1016/j.agee.2016.12.019 Search in Google Scholar

Hangs, R. D., Ahmed, H. P., & Schoenau, J. J. (2015). Influence of willow biochar amendment on soil nitrogen availability and greenhouse gas production in two fertilized temperate prairie soils. Bioenergy Research, 9(1), 157–171. https://doi.org/10.1007/s12155-015-9671-510.1007/s12155-015-9671-5 Search in Google Scholar

Horák, J. (2015). Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian lowland. Acta Horticulturae et Regiotecturae, 18(1), 20–24. https://doi.org/10.1515/ahr-2015-000510.1515/ahr-2015-0005 Search in Google Scholar

Horák, J., Kotuš, T., Toková, L., Aydın, E., Igaz, D., & Šimanský, V. (2021). A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application. Agronomy, 11(3), 582. https://doi.org/10.3390/agronomy1103058210.3390/agronomy11030582 Search in Google Scholar

Islam, M. U., Jiang, F., Guo, Z., & Peng, X. (2021). Does biochar application improve soil aggregation? A meta-analysis. Soil and Tillage Research, 209, 104926. https://doi.org/10.1016/j.still.2020.10492610.1016/j.still.2020.104926 Search in Google Scholar

Kamali, M., Sweygers, N., Al-Salem, S., Appels, L., Aminabhavi, T. M., & Dewil, R. (2022). Biochar for soil applications-sustainability aspects, challenges and future prospects. Chemical Engineering Journal, 428, 131189. https://doi.org/10.1016/j.cej.2021.13118910.1016/j.cej.2021.131189 Search in Google Scholar

Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental science & technology, 44(4), 1247–1253. https://doi.org/10.1021/es903141910.1021/es903141920099810 Search in Google Scholar

Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4), 990–1000. https://doi.org/10.2134/jeq2011.007010.2134/jeq2011.007022751041 Search in Google Scholar

Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in agronomy, 112, 103–143. https://doi.org/10.1016/B978-0-12-385538-1.00003-210.1016/B978-0-12-385538-1.00003-2 Search in Google Scholar

Kotuš, T., & Horák, J. (2021). Does biochar influence soil CO2 emission four years after its application to soil? Acta Horticulturae et Regiotecturae, 24(s1), 109–116. https://doi.org/10.2478/ahr-2021-001610.2478/ahr-2021-0016 Search in Google Scholar

Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environment international, 87, 1–12. https://doi.org/10.1016/j.envint.2015.10.01810.1016/j.envint.2015.10.01826638014 Search in Google Scholar

Laghari, M., Mirjat, M. S., Hu, Z., Fazal, S., Xiao, B., Hu, M., Chen, Z., & Guo, D. (2015). Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena, 135, 313–320. https://doi.org/10.1016/j.catena.2015.08.01310.1016/j.catena.2015.08.013 Search in Google Scholar

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.02210.1016/j.soilbio.2011.04.022 Search in Google Scholar

Liu, L., Tan, S. J., Horikawa, T., Do, D. D., Nicholson, D., & Liu, J. (2017). Water adsorption on carbon – A review. Advances in Colloid and Interface Science, 250, 64–78. https://doi.org/10.1016/j.cis.2017.10.00210.1016/j.cis.2017.10.00229129312 Search in Google Scholar

Marshall, J., Muhlack, R., Morton, B. J., Dunnigan, L., Chittleborough, D., & Kwong, C. W. (2019). Pyrolysis temperature effects on biochar – Water interactions and application for improved water holding capacity in vineyard soils. Soil Systems, 3(2), 27. https://doi.org/10.3390/soilsystems302002710.3390/soilsystems3020027 Search in Google Scholar

Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313–339. https://doi.org/10.3390/agronomy302031310.3390/agronomy3020313 Search in Google Scholar

Nelissen, V., Ruysschaert, G., Manka’Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., Cornelis, W., & Boeckx, P. (2015). Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. European Journal of Agronomy, 62, 65–78. https://doi.org/10.1016/j.eja.2014.09.00610.1016/j.eja.2014.09.006 Search in Google Scholar

Nguyen, V. T., Horikawa, T., Do, D. D., & Nicholson, D. (2014). Water as a potential molecular probe for functional groups on carbon surfaces. Carbon, 67, 72–78. https://doi.org/10.1016/j.carbon.2013.09.05710.1016/j.carbon.2013.09.057 Search in Google Scholar

Pastor-Villegas, J., Rodríguez, J. M., Pastor-Valle, J. F., Rouquerol, J., Denoyel, R., & García, M. G. (2010). Adsorption-desorption of water vapour on chars prepared from commercial wood charcoals, in relation to their chemical composition, surface chemistry and pore structure. Journal of Analytical and Applied Pyrolysis, 88(2), 124–133. https://doi.org/10.1016/j.jaap.2010.03.0010.1016/j.jaap.2010.03.005 Search in Google Scholar

Rastvorova, O. G., Andreev, A. P., Gagarina, E. I., Kasatkina, G. A., & Fyedorova, N. N. (1995). Chemical analysis of soils. St. Petersburg University Publishing, Russian Federation, 264 (in Russian). Search in Google Scholar

Ren, X., Sun, H., Wang, F., & Cao, F. (2016). The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months. Chemosphere, 144, 2257–2263. https://doi.org/10.1016/j.chemosphere.2015.10.13210.1016/j.chemosphere.2015.10.13226598994 Search in Google Scholar

Singh, B., Fang, Y., Cowie, B. C., & Thomsen, L. (2014). NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars. Organic Geochemistry, 77, 1–10. https://doi.org/10.1016/j.orggeochem.2014.09.00610.1016/j.orggeochem.2014.09.006 Search in Google Scholar

Verheijen, F. G., Montanarella, L., & Bastos, A. C. (2012). Sustainability, certification, and regulation of biochar. Pesquisa Agropecuária Brasileira, 47(5), 649–653. https://doi.org/10.1590/S0100-204X201200050000310.1590/S0100-204X2012000500003 Search in Google Scholar

Yao, F. X., Arbestain, M. C., Virgel, S., Blanco, F., Arostegui, J., Maciá-Agulló, J. A., & Macìas, F. (2010). Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere, 80(7), 724–732. https://doi.org/10.1016/j.chemosphere.2010.05.02610.1016/j.chemosphere.2010.05.02620542316 Search in Google Scholar

eISSN:
1338-5259
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Industrial Chemistry, Green and Sustainable Technology