À propos de cet article

Citez

Acute leukemias are the most commonly diagnosed malignancies in children. Acute leukemias constitute a heterogeneous group of cancers resulting from clonal outgrowth and accumulation of immature precursor cells of different hematologic lineages. Cancerous transformation begins with disruption of cell maturation mechanisms triggered by particular environmental or endogenic factors, including innate and acquired immunodeficiencies as well as autoimmune diseases.

Research in the field of acute leukemias has revealed many possible genetic abnormalities in leukemic cells, including both structural and numerical aberrations. The former can produce some particular fusion genes, yielding fusion protein products which can have an oncogenic potential in hematopoietic cells. Some of them, including translocations resulting in fusion product formation BCR-ABL1 and different fusion products involving the KMT2A gene, are markers of adverse prognosis, whereas numerical aberrations with high hyperdiploidy and chromosome number exceeding 51 are markers of favorable prognosis. Detection of these aberrations already has a well-grounded clinical significance in acute lymphoblastic leukemia and plays an important role in patient risk stratification. The appearance of particular genetic changes often correlates with the expression of certain markers on the surface of leukemic cells. Determination of expression or lack of specific antigens, that is, immunophenotyping, is possible with the use of the flow cytometry technique. Flow cytometry is currently considered as a fast and broadly available technique which can provide clinically useful information in a relatively short time after biological specimen collection. Flow cytometry also enables appropriate classification of acute leukemias.

eISSN:
1732-2693
Langue:
Anglais