Accès libre

Concentration-dependent effect of silymarin on concanavalin A-stimulated mouse spleen cells in vitro

À propos de cet article

Citez

Alidoost F, Gharagozloo M, Bagherpour B, et al. Effects of silymarin on the proliferation and glutathione levels of peripheral blood mononuclear cells from beta-thalassemia major patients. Int Immunopharmacol. 2006;6:1305–1310.AlidoostFGharagozlooMBagherpourBEffects of silymarin on the proliferation and glutathione levels of peripheral blood mononuclear cells from beta-thalassemia major patientsInt Immunopharmacol200661305131010.1016/j.intimp.2006.04.00416782543Search in Google Scholar

Chao T, Wang H, Ho PC. Mitochondrial control and guidance of cellular activities of T cells. Front Immunol. 2017;8:473.ChaoTWangHHoPCMitochondrial control and guidance of cellular activities of T cellsFront Immunol2017847310.3389/fimmu.2017.00473540187128484465Search in Google Scholar

Darzynkiewicz Z, Traganos F, Staiano-Coico L, Kapuscinski J, Melamed MR. Interaction of rhodamine 123 with living cells studied by flow cytometry. Cancer Res. 1982;42:799–806.DarzynkiewiczZTraganosFStaiano-CoicoLKapuscinskiJMelamedMRInteraction of rhodamine 123 with living cells studied by flow cytometryCancer Res198242799806Search in Google Scholar

Dwyer JM, Johnson C. The use of concanavalin A to study the immunoregulation of human T cells. Clin Exp Immunol. 1981;46:237–249.DwyerJMJohnsonCThe use of concanavalin A to study the immunoregulation of human T cellsClin Exp Immunol198146237249Search in Google Scholar

Esmaeil N, Anaraki SB, Gharagozloo M, Moayedi B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int Immunopharmacol. 2017;50:194–201.EsmaeilNAnarakiSBGharagozlooMMoayediBSilymarin impacts on immune system as an immunomodulator: One key for many locksInt Immunopharmacol20175019420110.1016/j.intimp.2017.06.03028672215Search in Google Scholar

Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol. 2009;10:689–695.FeuererMHillJAMathisDBenoistCFoxp3+ regulatory T cells: differentiation, specification, subphenotypesNat Immunol20091068969510.1038/ni.176019536194Search in Google Scholar

Fraschini F, Demartini G, Esposti D. Pharmacology of Silymarin. Clin Drug Invest. 2002;22:51–65.FraschiniFDemartiniGEspostiDPharmacology of SilymarinClin Drug Invest200222516510.2165/00044011-200222010-00007Search in Google Scholar

Gažák R, Walterova D, Kren V. Silybin and silymarin--new and emerging applications in medicine. Curr Med Chem. 2007;14:315–338.GažákRWalterovaDKrenVSilybin and silymarin--new and emerging applications in medicineCurr Med Chem20071431533810.2174/09298670777994115917305535Search in Google Scholar

Gharagozloo M, Javid EN, Rezaei A, Mousavizadeh K. Silymarin inhibits cell cycle progression and mTOR activity in activated human T cells: therapeutic implications for autoimmune diseases. Basic Clin Pharmacol Toxicol. 2013;112:251–256.GharagozlooMJavidENRezaeiAMousavizadehKSilymarin inhibits cell cycle progression and mTOR activity in activated human T cells: therapeutic implications for autoimmune diseasesBasic Clin Pharmacol Toxicol201311225125610.1111/bcpt.1203223121838Search in Google Scholar

Gharagozloo M, Velardi E, Bruscoli S, et al. Silymarin suppress CD4+ T cell activation and proliferation: effects on NF-kappaB activity and IL-2 production. Pharmacol Res. 2010;61:405–409.GharagozlooMVelardiEBruscoliSSilymarin suppress CD4+ T cell activation and proliferation: effects on NF-kappaB activity and IL-2 productionPharmacol Res20106140540910.1016/j.phrs.2009.12.01720056147Search in Google Scholar

Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–1061.HoriSNomuraTSakaguchiSControl of regulatory T cell development by the transcription factor Foxp3Science20032991057106110.1126/science.107949012522256Search in Google Scholar

Johnson VJ, He Q, Osuchowski MF, Sharma RP. Physiological responses of a natural antioxidant flavonoid mixture, silymarin, in BALB/c mice: III. Silymarin inhibits T-lymphocyte function at low doses but stimulates inflammatory processes at high doses. Planta Med. 2003;69:44–49.JohnsonVJHeQOsuchowskiMFSharmaRPPhysiological responses of a natural antioxidant flavonoid mixture, silymarin, in BALB/c mice: III. Silymarin inhibits T-lymphocyte function at low doses but stimulates inflammatory processes at high dosesPlanta Med200369444910.1055/s-2003-3702312567278Search in Google Scholar

Karimi G, Hassanzadeh-Josan S, Memar B, Esmaeili SA, Riahi-Zanjani B. Immunomodulatory effects of silymarin after subacute exposure to mice: A tiered approach immunotoxicity screening. J Pharmacopuncture. 2018;21:90–97.KarimiGHassanzadeh-JosanSMemarBEsmaeiliSARiahi-ZanjaniBImmunomodulatory effects of silymarin after subacute exposure to mice: A tiered approach immunotoxicity screeningJ Pharmacopuncture201821909710.3831/KPI.2018.21.011Search in Google Scholar

Krauss S, Buttgereit F, Brand MD. Effects of the mitogen concanavalin A on pathways of thymocyte energy metabolism. Biochim Biophys Acta. 1999;1412:129–138.KraussSButtgereitFBrandMDEffects of the mitogen concanavalin A on pathways of thymocyte energy metabolismBiochim Biophys Acta1999141212913810.1016/S0005-2728(99)00058-4Search in Google Scholar

Kulkarni GV, Lee W, Seth A, McCulloch CA. Role of mitochondrial membrane potential in concanavalin A-induced apoptosis in human fibroblasts. Exp Cell Res. 1998;245:170–178.KulkarniGVLeeWSethAMcCullochCARole of mitochondrial membrane potential in concanavalin A-induced apoptosis in human fibroblastsExp Cell Res199824517017810.1006/excr.1998.42459828113Search in Google Scholar

Kwon DY, Jung YS, Kim SJ, Kim YS, Choi DW, Kim YC. Alterations in sulfur amino acid metabolism in mice treated with silymarin: a novel mechanism of its action involved in enhancement of the antioxidant defense in liver. Planta Med. 2013;79:997–1002.KwonDYJungYSKimSJKimYSChoiDWKimYCAlterations in sulfur amino acid metabolism in mice treated with silymarin: a novel mechanism of its action involved in enhancement of the antioxidant defense in liverPlanta Med201379997100210.1055/s-0032-132870423807810Search in Google Scholar

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408.LivakKJSchmittgenTDAnalysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) MethodMethods20012540240810.1006/meth.2001.126211846609Search in Google Scholar

Lovelace ES, Maurice NJ, Miller HW, et al. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells. PloS one. 2017;12:e0171139–e0171139.LovelaceESMauriceNJMillerHWSilymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cellsPloS one201712e0171139e017113910.1371/journal.pone.0171139529153228158203Search in Google Scholar

Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol. 1999;163:6800–6809.MannaSKMukhopadhyayAVanNTAggarwalBBSilymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosisJ Immunol199916368006809Search in Google Scholar

Namdari H, Izad M, Rezaei F, Amirghofran Z. Differential regulation of CD4(+) T cell subsets by Silymarin in vitro and in ovalbumin immunized mice. Daru. 2018;26:215–227.NamdariHIzadMRezaeiFAmirghofranZDifferential regulation of CD4(+) T cell subsets by Silymarin in vitro and in ovalbumin immunized miceDaru20182621522710.1007/s40199-018-0229-x627965830478656Search in Google Scholar

O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16:553–565.O’NeillLAKishtonRJRathmellJA guide to immunometabolism for immunologistsNat Rev Immunol20161655356510.1038/nri.2016.70500191027396447Search in Google Scholar

O’Sullivan D, Pearce EL. Targeting T cell metabolism for therapy. Trends Immunol. 2015;36:71–80.O’SullivanDPearceELTargeting T cell metabolism for therapyTrends Immunol201536718010.1016/j.it.2014.12.004432362325601541Search in Google Scholar

Ozay EI, Sherman HL, Mello V, et al. Rotenone treatment reveals a role for electron transport complex i in the subcellular localization of key transcriptional regulators during T helper cell differentiation. Front Immunol. 2018;9:1284.OzayEIShermanHLMelloVRotenone treatment reveals a role for electron transport complex i in the subcellular localization of key transcriptional regulators during T helper cell differentiationFront Immunol20189128410.3389/fimmu.2018.01284599973529930555Search in Google Scholar

Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008;269:352–362.RamasamyKAgarwalRMultitargeted therapy of cancer by silymarinCancer Lett200826935236210.1016/j.canlet.2008.03.053261299718472213Search in Google Scholar

Robertson JD, Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol. 2000;30:609–627.RobertsonJDOrreniusSMolecular mechanisms of apoptosis induced by cytotoxic chemicalsCrit Rev Toxicol20003060962710.1080/1040844000895112211055838Search in Google Scholar

Saller R, Meier R, Brignoli R. The use of silymarin in the treatment of liver diseases. Drugs. 2001;61:2035–2063.SallerRMeierRBrignoliRThe use of silymarin in the treatment of liver diseasesDrugs2001612035206310.2165/00003495-200161140-0000311735632Search in Google Scholar

Shinohara Y, Tsukimoto M. Adenine nucleotides attenuate murine T cell activation induced by Concanavalin A or T cell receptor stimulation. Front Pharmacol. 2018;8:986.ShinoharaYTsukimotoMAdenine nucleotides attenuate murine T cell activation induced by Concanavalin A or T cell receptor stimulationFront Pharmacol2018898610.3389/fphar.2017.00986576760129375385Search in Google Scholar

Surai PF. Silymarin as a Natural Antioxidant: An overview of the current evidence and perspectives. Antioxidants (Basel). 2015;4:204–247.SuraiPFSilymarin as a Natural Antioxidant: An overview of the current evidence and perspectivesAntioxidants (Basel)2015420424710.3390/antiox4010204466556626785346Search in Google Scholar

Wang JL, Cunningham BA, Edelman GM. Unusual fragments in the subunit structure of concanavalin A. Proc Natl Acad Sci U S A. 1971;68:1130–1134.WangJLCunninghamBAEdelmanGMUnusual fragments in the subunit structure of concanavalin AProc Natl Acad Sci U S A1971681130113410.1073/pnas.68.6.11303891355288363Search in Google Scholar

Wilasrusmee C, Kittur S, Shah G, et al. Immunostimulatory effect of Silybum Marianum (milk thistle) extract. Med Sci Monit. 2002;8:Br439–443.WilasrusmeeCKitturSShahGImmunostimulatory effect of Silybum Marianum (milk thistle) extractMed Sci Monit20028Br439443Search in Google Scholar

Yuan J. Divergence from a dedicated cellular suicide mechanism: exploring the evolution of cell death. Mol Cell. 2006;2:1–12.YuanJDivergence from a dedicated cellular suicide mechanism: exploring the evolution of cell deathMol Cell2006211210.1016/j.molcel.2006.06.00816818228Search in Google Scholar

Zhao J, Agarwal R. Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis. 1999;20:2101–2108.ZhaoJAgarwalRTissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemopreventionCarcinogenesis1999202101210810.1093/carcin/20.11.210110545412Search in Google Scholar

eISSN:
1338-6786
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Pharmacy, other