À propos de cet article

Citez

GOLDSMID, H. J.: (2016) The Thermoelectric and Related Effects. In: Introduction to Thermoelectricity. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–7 Search in Google Scholar

LUNDSTROM, M. ‒ JEONG, C.: (2013) Near-equilibrium transport: fundamentals and applications. World Scientific, Singapore ; Hackensack, NJ Search in Google Scholar

CHEN, L. ‒ LIU, R. ‒ SHI, X.: (2021) General principles of thermoelectric technology. In: Thermoelectric Materials and Devices. Elsevier, pp 1–18 Search in Google Scholar

GOLDSMID, H. J.: (2016) Thermoelectric Properties of Metals and Semiconductors. In: Introduction to Thermoelectricity. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 25–44 Search in Google Scholar

RIFFAT, S.B. ‒ MA, X.: (2003) Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering 23:913–935. https://doi.org/10.1016/S1359-4311(03)00012-7 Search in Google Scholar

BELL, L. E.: (2008) Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321:1457–1461. https://doi.org/10.1126/science.1158899 Search in Google Scholar

MUHAMAD ZUHUD, A. ‒ MOCHAMMAD, F. ‒ WIDAYAT, W.: (2018) Thermoelectric application in energy conservation. E3S Web Conf 73:01009. https://doi.org/10.1051/e3sconf/20187301009 Search in Google Scholar

LIU, Z. ‒ TIAN, B. ‒ LI, Y. et al.: (2023) Evolution of Thermoelectric Generators: From Application to Hybridization. Small 2304599. https://doi.org/10.1002/smll.202304599 Search in Google Scholar

LV, H. ‒ LIANG, L. ‒ ZHANG, Y. et al.: (2021) A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 88:106260. https://doi.org/10.1016/j.nanoen.2021.106260 Search in Google Scholar

JAYATHILAKA WADM ‒ QI, K. ‒ QIN, Y. et al.: (2019) Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. Adv Mater 31:1805921. https://doi.org/10.1002/adma.201805921 Search in Google Scholar

WOLF, M. ‒ HINTERDING, R. ‒ FELDHOFF, A.: (2019) High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application. Entropy 21:1058. https://doi.org/10.3390/e21111058 Search in Google Scholar

TIAN, Z. ‒ LEE, S. ‒ CHEN, G.: (2014) COMPREHENSIVE REVIEW OF HEAT TRANSFER IN THERMOELECTRIC MATERIALS AND DEVICES. Annual Rev Heat Transfer 17:425–483. https://doi.org/10.1615/AnnualRevHeatTransfer.2014006932 Search in Google Scholar

ZHU, M. ‒ SHI, X-L. ‒ WU, H. et al.: (2023) Advances in Ag2S -based thermoelectrics for wearable electronics: progress and perspective. Chemical Engineering Journal 473:145236. https://doi.org/10.1016/j.cej.2023.145236 Search in Google Scholar

SINGH, J. ‒ VERMA, S. S.: (2013) Global Journal of Researches in Engineering Electrical and Electronics Engineering. Comparison of Figure of Merit for Some Common Thermocouples in the High Temperature Range 11:1–7 Search in Google Scholar

CHEN, L. ‒ LIU, R. ‒ SHI, X.: (2021) Strategies to optimize thermoelectric performance. In: Thermoelectric Materials and Devices. Elsevier, pp 19–50 Search in Google Scholar

GIRI, K. ‒ WANG, Y-L. ‒ CHEN, T-H. ‒ CHEN, CH.: (2022) Challenges and strategies to optimize the figure of merit: Keeping eyes on thermoelectric metamaterials. Materials Science in Semiconductor Processing 150:106944. https://doi.org/10.1016/j.mssp.2022.106944 Search in Google Scholar

TRIPATHI, M. N. ‒ BHANDARI, C. M.: (2005) Material parameters for thermoelectric performance. Pramana - J Phys 65:469–479. https://doi.org/10.1007/BF02704204 Search in Google Scholar

MEHDIZADEH DEHKORDI, A. ‒ ZEBARJADI, M. ‒ HE, J. ‒ TRITT, T. M.: (2015) Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Materials Science and Engineering: R: Reports 97:1–22. https://doi.org/10.1016/j.mser.2015.08.001 Search in Google Scholar

WEI, J. ‒ YANG, L. ‒ MA, Z., et al.: (2020) Review of current high-ZT thermoelectric materials. J Mater Sci 55:12642–12704. https://doi.org/10.1007/s10853-020-04949-0 Search in Google Scholar

PAL’YANOVA, G. A. ‒ CHUDNENKO, K.V. ‒ ZHURAVKOVA, T.V.: (2014) Thermodynamic properties of solid solutions in the system Ag2S – Ag2Se. Thermochimica Acta 575:90–96. https://doi.org/10.1016/j.tca.2013.10.018 Search in Google Scholar

CHEN, H. ‒ WEI, T. ‒ ZHAO, K., et al.: (2021) Room-temperature plastic inorganic semiconductors for flexible and deformable electronics. InfoMat 3:22–35. https://doi.org/10.1002/inf2.12149 Search in Google Scholar

LIANG, J. ‒ WANG, T. ‒ QIU, P., et al.: (2019) Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ Sci 12:2983–2990. https://doi.org/10.1039/C9EE01777A Search in Google Scholar

WANG, H. ‒ MA, H. ‒ DUAN, B., et al.: (2021) High-Pressure Rapid Preparation of High-Performance Binary Silver Sulfide Thermoelectric Materials. ACS Appl Energy Mater 4:1610–1618. https://doi.org/10.1021/acsaem.0c02810 Search in Google Scholar

TARACHAND, MUKHERJEE, B. ‒ SAXENA, M., et al.: (2019) Ag-Nanoinclusion-Induced Enhanced Thermoelectric Properties of Ag 2 S. ACS Appl Energy Mater 2:6383–6394. https://doi.org/10.1021/acsaem.9b01016 Search in Google Scholar

TOBY, B. H. ‒ VON DREELE, R. B.: (2013) GSASII : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549. https://doi.org/10.1107/S0021889813003531 Search in Google Scholar

GRAŽULIS, S. ‒ DAŠKEVIČ, A. ‒ MERKYS, A., et al.: (2012) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Research 40:D420–D427. https://doi.org/10.1093/nar/gkr900 Search in Google Scholar

GAYNER, C. ‒ KAR, K. K.: (2016) Recent advances in thermoelectric materials. Progress in Materials Science 83:330–382. https://doi.org/10.1016/j.pmatsci.2016.07.002 Search in Google Scholar

eISSN:
1338-3957
Langue:
Anglais