À propos de cet article

Citez

MEKHMOUKEN, S., et al.: ‘Gold nanoparticle-based eco-friendly ink for electrode patterning on flexible substrates’, Electrochemistry Communications, vol. 123, p. 106918, Feb. 2021, doi: 10.1016/j.elecom.2021.106918. Search in Google Scholar

IBRAHIM, N. ‒ AKINDOYO, J. O. ‒ MARIATTI, M.: ‘Recent development in silver-based ink for flexible electronics’, Journal of Science: Advanced Materials and Devices, vol. 7, no. 1, p. 100395, Mar. 2022, doi: 10.1016/j.jsamd.2021.09.002. Search in Google Scholar

ZENG, X. et al.: ‘Copper inks for printed electronics: a review’, Nanoscale, vol. 14, no. 43, pp. 16003–16032, 2022, doi: 10.1039/D2NR03990G. Search in Google Scholar

CORZO, D. ‒ TOSTADO-BLÁZQUEZ, G. ‒ BARAN, D.: ‘Flexible Electronics: Status, Challenges and Opportunities’, Front.Electron., vol. 1, p. 594003, Sep. 2020, doi: 10.3389/felec.2020.594003. Search in Google Scholar

SUH, Y. D., et al.: ‘Nanowire reinforced nanoparticle nanocomposite for highly flexible transparent electrodes: borrowing ideas from macrocomposites in steel-wire reinforced concrete’, J. Mater. Chem. C, vol. 5, no. 4, pp. 791–798, 2017, doi: 10.1039/C6TC04529D. Search in Google Scholar

LIU, T., et al.: ‘Inkjet printing high performance flexible electrodes via a graphene decorated Ag ink’, Surfaces and Interfaces, vol. 28, p. 101609, Feb. 2022, doi: 10.1016/j.surfin.2021.101609. Search in Google Scholar

MENG, Y. ‒ MA, T. ‒ PAVINATTO, F. J. ‒ MACKENZIE, J. D.: ‘Interface Modified Flexible Printed Conductive Films via Ag 2 O Nanoparticle Decorated Ag Flake Inks’, ACS Appl. Mater. Interfaces, vol. 11, no. 9, pp. 9190–9196, Mar. 2019, doi: 10.1021/acsami.8b20057. Search in Google Scholar

ZHANG, H. ‒ GAO, Y. ‒ JIU, J. ‒ SUGANUMA, K.: ‘In situ bridging effect of Ag2O on pressureless and low-temperature sintering of micron-scale silver paste’, Journal of Alloys and Compounds, vol. 696, pp. 123–129, Mar. 2017, doi: 10.1016/j.jallcom.2016.11.225. Search in Google Scholar

HE, L., et al.: ‘Robust Ag-Cu Sintering Bonding at 160 °C via Combining Ag2O Microparticle Paste and Pt-Catalyzed Formic Acid Vapor’, Metals, vol. 10, no. 3, p. 315, Feb. 2020, doi: 10.3390/met10030315. Search in Google Scholar

LI, C., et al.: ‘Conductivity enhancement of polymer composites using high-temperature short-time treated silver fillers’, Composites Part A: Applied Science and Manufacturing, vol. 100, pp. 64–70, Sep. 2017, doi: 10.1016/j.compositesa.2017.05.007. Search in Google Scholar

MOU, Y., et al.: ‘In situ self-reducing Ag2O ink for the fabrication of highly flexible printed conductors’, Materials Today Communications, vol. 29, p. 102776, Dec. 2021, doi: 10.1016/j.mtcomm.2021.102776. Search in Google Scholar

KHAYATI, G. R. ‒ JANGHORBAN, K.: ‘The nanostructure evolution of Ag powder synthesized by high energy ball milling’, Advanced Powder Technology, vol. 23, no. 3, pp. 393–397, May 2012, doi: 10.1016/j.apt.2011.05.005. Search in Google Scholar

KHAYATI, G. R. ‒ JANGHORBAN, K.: ‘Preparation of nanostructure silver powders by mechanical decomposing and mechanochemical reduction of silver oxide’, Transactions of Nonferrous Metals Society of China, vol. 23, no. 5, pp. 1520–1524, May 2013, doi: 10.1016/S1003-6326(13)62625-4. Search in Google Scholar

KHAYATI, G. R. ‒ JANGHORBAN, K.: ‘Thermodynamic approach to synthesis of silver nanocrystalline by mechanical milling silver oxide’, Transactions of Nonferrous Metals Society of China, vol. 23, no. 2, pp. 543–547, Feb. 2013, doi: 10.1016/S1003-6326(13)62497-8. Search in Google Scholar

REAL, C. ‒ GOTOR, F. J.: ‘Effects of the speed ratio on the efficiency of planetary mills’, Heliyon, vol. 5, no. 2, p. e01227, Feb. 2019, doi: 10.1016/j.heliyon.2019.e01227. Search in Google Scholar

LI, N., et al.: ‘Preparation of Micro-Size Spherical Silver Particles and Their Application in Conductive Silver Paste’, Materials, vol. 16, no. 4, p. 1733, Feb. 2023, doi: 10.3390/ma16041733. Search in Google Scholar

SCHIMO, G. ‒ KREUZER, A. M. ‒ HASSEL, A. W.: ‘Morphology and size effects on the reduction of silver oxide by hydrogen’, Physica Status Solidi (a), vol. 212, no. 6, pp. 1202–1209, Jun. 2015, doi: 10.1002/pssa.201431669. Search in Google Scholar

SARWAT, S. G.: ‘Contamination in wet-ball milling’, Powder Metallurgy, vol. 60, no. 4, pp. 267–272, Aug. 2017, doi: 10.1080/00325899.2017.1280647. Search in Google Scholar

NGUYEN, N. P. U. ‒ DANG, N. T. ‒ DOAN, L. ‒ NGUYEN, T. T. H.: ‘Synthesis of Silver Nanoparticles: From Conventional to “Modern” Methods—A Review’, Processes, vol. 11, no. 9, p. 2617, Sep. 2023, doi: 10.3390/pr11092617. Search in Google Scholar

WEI, L., et al.: ‘Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review’, Materials, vol. 16, no. 13, p. 4635, Jun. 2023, doi: 10.3390/ma16134635. Search in Google Scholar

Retsch, ‘Ultrafine Grinding with Laboratory Ball Mills’. 2015. Search in Google Scholar

KONG, Z. ‒ WANG, Z. ‒ CHEN, B. ‒ LI, Y. ‒ LI, R.: ‘Effect of Ball Milling Time on the Microstructure and Properties of High-Silicon–Aluminum Composite’, Materials, vol. 16, no. 17, p. 5763, Aug. 2023, doi: 10.3390/ma16175763. Search in Google Scholar

ROSENKRANZ, S. ‒ BREITUNG-FAES, S. ‒ KWADE, A.: ‘Experimental investigations and modelling of the ball motion in planetary ball mills’, Powder Technology, vol. 212, no. 1, pp. 224–230, Sep. 2011, doi: 10.1016/j.powtec.2011.05.021. Search in Google Scholar

SHIN, H. ‒ LEE, S. ‒ SUK JUNG, H. ‒ KIM, J.-B.: ‘Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill’, Ceramics International, vol. 39, no. 8, pp. 8963–8968, Dec. 2013, doi: 10.1016/j.ceramint.2013.04.093. Search in Google Scholar

FOSTER, C. W. ‒ KADARA, R. O. ‒ BANKS, C. E.: ‘Fundamentals of Screen-Printing Electrochemical Architectures’, in Screen-Printing Electrochemical Architectures, in SpringerBriefs in Applied Sciences and Technology. Cham: Springer International Publishing, 2016, pp. 13–23. doi: 10.1007/978-3-319-25193-6_2. Search in Google Scholar

‘The Effect of Ball Size Diameter on Milling Performance’, J Material Sci Eng, vol. 04, no. 01, 2014, doi: 10.4172/2169-0022.1000149. Search in Google Scholar

WU, Z. M., et al.: ‘The ball to powder ratio (BPR) dependent morphology and microstructure of tungsten powder refined by ball milling’, Powder Technology, vol. 339, pp. 256–263, Nov. 2018, doi: 10.1016/j.powtec.2018.07.094. Search in Google Scholar

Malvern Panalytical a spectris company, ‘Mastersizer 2000 particle size analyzer’. 2021. Search in Google Scholar

MICCOLI, I. ‒ EDLER, F. ‒ PFNÜR, H. ‒ TEGENKAMP, C.: ‘The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems’, J. Phys.: Condens. Matter, vol. 27, no. 22, p. 223201, Jun. 2015, doi: 10.1088/0953-8984/27/22/223201. Search in Google Scholar

Horiba scientific, ‘A guidebook to particle size analysis’. 2022. Search in Google Scholar

International centre for difraction data, ‘ICDDJCPDS PDF-2 powder diffraction database, Record No. 41-1104’. Search in Google Scholar

International centre for difraction data, ‘ICDDJCPDS PDF-2 powder diffraction database, Record No. 4-783’. Search in Google Scholar

eISSN:
1338-3957
Langue:
Anglais