À propos de cet article

Citez

[1] CARVALHO, D. V. – PEREIRA, E. M. – CARDOSO, J. S.: Machine learning interpretability: A survey on methods and metrics. Electronics, vol. 8, no. 832, 1–34, 2019.10.3390/electronics8080832 Search in Google Scholar

[2] SIMPAO, A. F. – AHUMADA, L. M. – GÁLVEZ, J. A. - REHMAN, M. A: A review of analytics and clinical informatics in health care. Journal of Medical Systems, vol. 38, no. 4, Apr. 2014.10.1007/s10916-014-0045-x24696396 Search in Google Scholar

[3] STIGLIC, G. – KOCBEK, P. – FIJACKO, N. -ZITNIK, M. – VERBERT, K. – CILAR, L.: Interpretability of machine learning based prediction models in healthcare, WIREs Data Mining Knowledge Discovery, vol. 10, no. 5, Jun. 2020.10.1002/widm.1379 Search in Google Scholar

[4] MAJNARIĆ, L.T. – BABIČ, F., O’SULLIVAN, S. – HOLZINGER, A.: AI and Big Data in Healthcare: Towards a More Comprehensive Research Framework for Multimorbidity, Journal of Clinical Medicine, vol. 10, no. 4, 766, Feb. 2021.10.3390/jcm10040766791866833672914 Search in Google Scholar

[5] HUND, M. – BÖHM, D. – STRUM, W. et al.: Visual analytics for concept exploration in subspaces of patient groups, Brain Inf., vol. 3, pp. 233–247, Dec. 2016.10.1007/s40708-016-0043-5510640627747817 Search in Google Scholar

[6] MAJNARIĆ, L.T. – BABIČ, F. – BOSNIC, Z., ZEKIC-SUŠAC, M. – WITTLINGER, T.: The use of Artificial Intelligence in assessing glucose variability in individuals with Diabetes type 2 from routine primary care data, Int. J. Diabetes Clin. Res., vol.7, no. 121, 2020.10.23937/2377-3634/1410121 Search in Google Scholar

[7] ROKOŠNÁ, J. – BABIČ, F. – MAJNARIĆ, L.T. – PUSTZOVÁ, L.: Cooperation between data analysts and medical experts, A case study. CD-MAKE 2020, Dublin, Ireland, 25–28 August, pp. 173–190, Aug. 2020.10.1007/978-3-030-57321-8_10 Search in Google Scholar

[8] MURTHY, K.S.: Automatic construction of decision tress from data: A multidisciplinary survey, Data Mining and Knowledge Discovery, pp. 345-389, 1997.10.1023/A:1009744630224 Search in Google Scholar

[9] QUINLAN, J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, 1993. Search in Google Scholar

[10] BREIMAN, L. – FRIEDMAN, J. H. – OLSHEN, R. A. – STONE, Ch. J.: Classification and Regression Trees, CRC Press, 1999. Search in Google Scholar

[11] BREIMAN, L.: Random Forests. Machine Learning 45, 5–32, 2001.10.1023/A:1010933404324 Search in Google Scholar

[12] ALTARAWNEH, R. – HUMAVOUN, S. R.: Visualizing Software Structures through Enhanced Interactive Sunburst Layout, In Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI ‘16), Association for Computing Machinery, New York, NY, USA, pp. 288–289, 2016.10.1145/2909132.2926066 Search in Google Scholar

[13] LUNDBERG, S. M. – LEE, S.: A Unified Approach to Interpreting Model Predictions, In: 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, pp. 1-10, 2017. Search in Google Scholar

[14] RIBEIRO, M. – SINGH, S. – GUESTRIN, C.: „Why Should I Trust You?“ Explaining the predictions of any classifier, In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. pp. 1135-1144, 2016. Search in Google Scholar

[15] SHAPLEY, S. L.: Contributions to the Theory of Game, Princeton: Princeton University Press, 1953. Search in Google Scholar

[16] LIU, C. – WANG, P.: A Sunburst-based hierarchical information visualization method and its application in public opinion analysis, In: 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI), Shenyang, China, pp. 832-836, 2015.10.1109/BMEI.2015.7401618 Search in Google Scholar

[17] SMITH, A. – HAWES, T. – MYERS, M.: Hiérarchie: Interactive visualization for hierarchical topic models. In: ACL Workshop on Interactive Language Learning, Visualization, and Interfaces, pp. 71–78, 2014. Search in Google Scholar

[18] ZHANG, Z. et al.: The Five Ws for Information Visualization with Application to Healthcare Informatics, In: IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 11, pp. 1895-1910, 2013. Search in Google Scholar

[19] KAUSHAL, K. K. et al.: Patient Journey Visualizer: A Tool for Visualizing Patient Journeys, 2017 International Conference on Machine Learning and Data Science (MLDS), Noida, India, pp. 106-113, 2017.10.1109/MLDS.2017.19 Search in Google Scholar

[20] KUMARAKULASINGHE, N. B. – BLOMBERG, T. – LIU, J. – LEAO, A. S. – PAPAPETROU, P.: Evaluating Local Interpretable Model-Agnostic Explanations on Clinical Machine Learning Classification Models, In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, pp. 7-12, 2020.10.1109/CBMS49503.2020.00009 Search in Google Scholar

[21] MESKE, C. – BUNDE, E.: Transparency and Trust in Human-AI-Interaction: The Role of Model-Agnostic Explanations in Computer Vision-Based Decision Support, In: Degen H., Reinerman-Jones L. (eds) Artificial Intelligence in HCI. HCII 2020. Lecture Notes in Computer Science 12217, Springer, Cham., 2020.10.1007/978-3-030-50334-5_4 Search in Google Scholar

[22] FREITAS DA CRUZ, H. – SCHNEIDER, F. – SCHAPRANOW, M.: Prediction of Acute Kidney Injury in Cardiac Surgery Patients: Interpretation using Local Interpretable Model-agnostic Explanations, In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 5, pp. 380-387, 2019.10.5220/0007399203800387 Search in Google Scholar

[23] THIMOTEO, L. M.: Interpretable Machine Learning for COVID-19 Diagnosis Through Clinical Variables, In: Congresso Brasileiro de Automática, vol. 2, 2020. Search in Google Scholar

[24] DETRANO, R. – JANOSI, A. – STEINBRUNN, W. – PFISTERER, M. – SCHMID, J. J. – SANDHU, S. – GUPPY, K. H. – LEE, S. – FROELICHER, V.: International application of a new probability algorithm for the diagnosis of coronary artery disease, Am J Cardiol., vol. 64, no. 5, pp. 304-10, 1989.10.1016/0002-9149(89)90524-9 Search in Google Scholar

[25] BABIČ, F. – OLEJÁR, J. – VANTOVÁ, Z. – PARALIČ, J.: Predictive and descriptive analysis for heart disease diagnosis, In: Federated Conference on Computer Science and Information Systems (FedCSIS), 2017. pp. 155-163, 2017.10.15439/2017F219 Search in Google Scholar

[26] MOLNAR, CH.: SHAP (SHapley Additive exPlanations). Interpretable machine learning. A Guide for Making Black Box Models Explainable, 2019. Search in Google Scholar

[27] HOLZINGER, A. – CARRINGTON, A. – MÜLLER, H.: Measuring the Quality of Explanations: The System Causability Scale (SCS). Künstl Intell, vol. 34, 193–198, 2020.10.1007/s13218-020-00636-z727105232549653 Search in Google Scholar

eISSN:
1338-3957
Langue:
Anglais