Accès libre

Determination of the antibacterial effect of bee venom against rainbow trout pathogens and antibiotic resistance gene expression

À propos de cet article

Citez

Massa F, Aydın I, Fezzardi D, Akbulut B, Atanasoff A, Beken AT, Bekh V, Buhlak Y, Burlachenko I, Can E, Carboni S, Caruso F, Dağtekin M, Demianenko K, Deniz H, Fidan D, Fourdain L, Frederiksen M, Guchmanidze A, Hamza H, Harvey J, Nenciu M, Nikolov G, Niţă V, Özdemir MD, Petrova-Pavlova E, Popescu G, Rad F, Seyhaneyildiz Can Ş, Theodorou JA, Thomas B, Tonachella N, Tribilustova E, Yakhontova I, Yesilsu AF, Yücel-Gier G: Black Sea aquaculture: Legacy, challenges and future opportunities. Aquac Stud 2021, 21(4): 181-220. Search in Google Scholar

Francis-Floyd R, Wellborn TL: Introduction to fish health management. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. 1991, 1-5. Search in Google Scholar

Irianto A, Autin B: Probiotics in aquaculture. J Fish Dis 2002, 25: 633-642. Search in Google Scholar

Austin B, Austin DA: Bacterial fish pathogens. In: Vibrionaceae representatives. 2012, 481-482. Search in Google Scholar

Toranzo AE, Magariños B, Romalde JL: A review of the main bacterial fish diseases in mariculture systems. Aquaculture 2005, 1(4): 37-61. Search in Google Scholar

Öztürk RÇ, Altınok İ: Bacterial and viral fish diseases in Turkey. Turk J Fish Aquat Sci 2014, 14(1): 275-297. Search in Google Scholar

Ürkü Ç, Önalan Ş: Determination of Lactococcus garvieae in cultured Rainbow trout by different diagnostic tecniques. Aquaculture Europe International Conference, Dubrovnik, Croatia 2017, 98-99. Search in Google Scholar

Heuer OE, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo FJ: Human health consequences of use of antimicrobial agents in aquaculture. Clin Infect Dis 2009, 49(8): 1248-1253. Search in Google Scholar

Romero J, Feijoó CG, Navarrete P: Antibiotics in Aquaculture Use, Abuse and Alternatives. In: Health and Environment in Aquaculture. Croatia: InTech; 2012, 159-198. Search in Google Scholar

Wise R: Antimicrobial resistance: priorities for action. J Antimicrob Chemother 2002, 49(4): 585-586. Search in Google Scholar

Kümmerer K: Significance of antibiotics in the environment. J Antimicrob Chemother 2003, 52(1): 5-7. Search in Google Scholar

Sarmah AK, Meyer MT, Boxall AB: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65(5): 725-759. Search in Google Scholar

Defoirdt T, Sorgeloos P, Bossier P: Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 2011, 14 (3): 251-258. Search in Google Scholar

Rico A, Phu TM, Satapornvanit K, Min J, Shahabuddin AM, Henriksson PJ, Van den Brink PJ: Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture 2013, 412: 231-243. Search in Google Scholar

Seyfried EE, Newton RJ, Rubert KF, Pedersen JA, McMahon KD: Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microb Ecol 2010, 59(4):799-807. Search in Google Scholar

Sihag RC, Sharma P: Probiotics: the new ecofriendly alternative measures of disease control for sustainable aquaculture. J Fish Aquat Sci 2012, 7(2): 72-103. Search in Google Scholar

Zhong Y, Chen ZF, Dai X, Liu SS, Zheng G, Zhu X, Cai Z: Investigation of the interaction between the fate of antibiotics in aquafarms and their level in the environment. J Environ Manage 2018, 207: 219-229. Search in Google Scholar

Yang H, Male M, Li Y, Wang N, Zhao C, Jin S, Hu J, Chen Z, Ye Z, Xu H: Efficacy of Hydroxy-L-proline (HYP) analogs in the treatment of primary hyperoxaluria in Drosophila Melanogaste. BMC Nephrol 2018, 19(167): 1-12. Search in Google Scholar

Bansemir A, Blume M, Schröder S, Lindequist U: Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 2006, 252(1): 79-84. Search in Google Scholar

De la Cruz-Cervantes JA, Benavides-González F, Sánchez-Martínez JG, Vázquez-Sauceda MDLL, Ruiz-Uribe AJ: Propolis in aquaculture: a review of its potential. Rev Fish Sci Aquac 2018, 26(3): 337-349. Search in Google Scholar

Tukmechi A, Ownagh A, Mohebbat A: In vitro antibacterial activities of ethanol extract of iranian propolis (EEIP) against fish pathogenic bacteria (Aeromonas hydrophila, Yersinia ruckeri & Streptococcus iniae). Braz J Microbiol 2010, 41(4): 1086-1092. Search in Google Scholar

Salimi S, Naghavi NS, Karbasızade V: Propolis, royal jelly and pollen from beehive have antibacterial effect on aquatic pathogenic bacterial isolates. Int J Med Microbiol 2013, 3(1): 218-224. Search in Google Scholar

Orsi RO, Santos VG, Pezzato LE, Carvalho PLD, Teixeira CP, Freitas J, Barros MM: Activity of Brazilian propolis against Aeromonas hydrophila and its effect on Nile tilapia growth, hematological and non-specific immune response under bacterial infection. An Acad Bras Cienc 2017, 89 (3): 1785-1799. Search in Google Scholar

Han S, Lee K, Yeo J, Kweon, H, Kim B, Kim J, Baek H, Kim ST: Antibacterial activity of the honey bee venom against bacterial mastitis pathogens infecting dairy cows. Int J Indust Entomol 2007, 14 (2): 137-142. Search in Google Scholar

Park S, Park B, Yun S, Kang H, So B, Yun S: Antimicrobial activities of honey bee venom against pathogens isolated from clinical bovine mastitis in Korea [abstract]. Planta Med 2013, 79- PL16. Search in Google Scholar

Leandro LF, Mendes CA, Casemiro LA, Vinholis AH, Cunha WR, De Almeida R, Martins CH: Antimicrobial activity of apitoxin, melittin and phospholipase A₂ of honey bee (Apis mellifera) venom against oral pathogens. An Acad Bras Cienc 2015, 87 (1):147-155. Search in Google Scholar

Al-Safar MA, Hassan JS, Abdulrhman T R, Kashkol AS: Antibacterial activity of bee venom against multidrug-resistant Acinetobacter baumannii locally isolates. Int J Res Pharm Sci 2018, 9(4): 1510-1514. Search in Google Scholar

Hegazi GA, Allah FM, Saleh AA, Abdou AM, Fouad EA: Antibacterial activity of Italian (Apis mellifera) bees venom. J Chem Pharm Sci 2017, 10(3): 1191-1195. Search in Google Scholar

Han SM, Lee KG, Park KK, Pak SC: Antimicrobial activity of honey bee venom against select infectious fish pathogens. N Am J Aquac 2013, 75(3): 445-448. Search in Google Scholar

Güler AŞ: Bal arısı (Apis mellifera) yetiştiriciliği hastalıkları ve ürünleri. Ankara Azim Matbaacılık; 2017, 402-410. Search in Google Scholar

Sofy AR, Sofy MR, El-Dougdoug KA, Zahra AA, Fadl AW, Hmed AA: Antibacterial and antibiofilm effects of bee venom from (Apis mellifera) on multidrug-resistant bacteria (MDRB). Az J Pharm Sci 2018, 58: 60-80. Search in Google Scholar

Clinical and Laboratory Standards Institute (CLSI): Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals: approved standard-third edition, USA 2008, M31-A3. Search in Google Scholar

Önalan Ş: Expression differences of stress and immunity genes in rainbow trout (Oncorhynchus mykiss) with different bacterial fish diseases. Isr J Aquac Bamidgeh 2019, 71(1): 1-10. Search in Google Scholar

SharifiAlishah M, Darvishzadeh R, Ahmadabadi M, Piri Kashtiban Y, Hasanpur K: Identification of differentially expressed genes in salt-tolerant oilseed sunflower (Helianthus annuus) genotype by RNA sequencing. Mol Biol Rep 2022, 49(5): 3583-3596. Search in Google Scholar

Bakr ME, Kashef MT, Hosny AED, Ramadan MA: Effect of spdC gene expression on virulence and antibiotic resistance in clinical Staphylococcus aureus isolates. Int Microbiol 2022, 25(3): 649-659 Search in Google Scholar

World Health Organization. (2014). Antimicrobial resistance: global report on surveillance. World Health Organization. https://apps.who.int/iris/handle/10665/112642. Search in Google Scholar

Humphreys G, Fleck F : United Nations meeting on antimicrobial resistance. Bull World Health Organ 2016, (94): 638-639. Search in Google Scholar

Holmes AH, Moore SL, Sundsfjord A, Steinbakk M, Regmi S, Karley A, Guerin JP, Piddock LJV: Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, (387): 176-187. Search in Google Scholar

Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G: The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337:1107-1111. Search in Google Scholar

Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (2017) GERMAP 2015— antimicrobial resistance and consumption. [https://www.bvl.bund.de/SharedDocs/Downloads/05_Tierarzneimittel/germap2015_EN.pdf;jsessionid=D322A834A9D036982C9F88F4EFF17EEF.1_cid322?__blob=publicationFile&v=5.Zugegriffen.] Search in Google Scholar

Hegazi AG, EL-Feel MA, Eman H, Abdel-Rahman, Abed Al-Fattah MA: Antibacterial activity of bee venom collected from Apis mellifera carniolan pure and hybrid races by two collection methods. Int J Curr Microbiol App Sci 2015, 4(4): 141-149. Search in Google Scholar

El-Seedi HR, Khalifa SA, Abd El-Wahed A, Gao R, Guo Z, Tahir HE, Abbas, G: Honeybee products: An updated review of neurological actions. Trends Food Sci Technol 2020, 101: 17-27. Search in Google Scholar

Kwon YB, Lee HJ, Han HJ, Mar WC, Kang SK, Yoon OB, Beitz AJ, Lee JH: The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci 2002, 71(2): 191-204. Search in Google Scholar

eISSN:
1820-7448
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Veterinary Medicine