À propos de cet article

Citez

1. Nguyen F, Peña L, Ibisch C, Loussouarn D, Gama A, Rieder N, Belousov A, Campone M, Abadie J: Canine invasive mammary carcinomas as models of human breast cancer. Part 1: natural history and prognostic factors. Breast cancer research and treatment 2018, 167:635-648.10.1007/s10549-017-4548-2580749429086231 Search in Google Scholar

2. Rasotto R, Zappulli V, Castagnaro M, Goldschmidt MH: A retrospective study of those histopathologic parameters predictive of invasion of the lymphatic system by canine mammary carcinomas. Veterinary pathology 2012, 49:330-340.10.1177/030098581140925321670194 Search in Google Scholar

3. Gray M, Meehan J, Martínez-Pérez C, Kay C, Turnbull AK, Morrison LR, Pang LY, Argyle D: Naturally-occurring canine mammary tumors as a translational model for human breast cancer. Frontiers in oncology 2020,10.10.3389/fonc.2020.00617719876832411603 Search in Google Scholar

4. Marconato L, Facchinetti A, Zanardello C, Rossi E, Vidotto R, Capello K, Melchiotti E, Laganga P, Zamarchi R, Vascellari M: Detection and prognostic relevance of circulating and disseminated tumour cell in dogs with metastatic mammary carcinoma: a pilot study. Cancers 2019, 11:163.10.3390/cancers11020163640671630717110 Search in Google Scholar

5. Ayob AZ, Ramasamy TS: Cancer stem cells as key drivers of tumour progression. Journal of biomedical science 2018, 25:1-8.10.1186/s12929-018-0426-4583895429506506 Search in Google Scholar

6. Paul CD, Mistriotis P, Konstantopoulos K: Cancer cell motility: lessons from migration in confined spaces. Nature Reviews Cancer 2017, 17:131-140.10.1038/nrc.2016.123536449827909339 Search in Google Scholar

7. Ye F, Yu P, Li N, Yang A, Xie X, Tang H, Liu P: Prognosis of invasive micropapillary carcinoma compared with invasive ductal carcinoma in breast: A meta-analysis of PSM studies. The Breast 2020, 51:11-20.10.1016/j.breast.2020.01.041737557332172190 Search in Google Scholar

8. Lin H, Hong Y, Huang B, Liu X, Zheng J, Qiu S: Vimentin Overexpressions induced by cell hypoxia promote Vasculogenic mimicry by renal cell carcinoma cells. BioMed research international 2019, 2019.10.1155/2019/7259691667989531428643 Search in Google Scholar

9. Zhang JG, Zhou HM, Zhang X, Mu W, Hu JN, Liu GL, Li Q: Hypoxic induction of vasculogenic mimicry in hepatocellular carcinoma: role of HIF-1 α, RhoA/ROCK and Rac1/PAK signaling. BMC cancer 2020, 20:1-3.10.1186/s12885-019-6501-8695878931931758 Search in Google Scholar

10. Strouhalova K, Přechová M, Gandalovičová A, Brábek J, Gregor M, Rosel D: Vimentin intermediate filaments as potential target for cancer treatment. Cancers 2020, 12:184.10.3390/cancers12010184701723931940801 Search in Google Scholar

11. Te Boekhorst V, Friedl P: Plasticity of cancer cell invasion—Mechanisms and implications for therapy. Advances in cancer research 2016, 132:209-64.10.1016/bs.acr.2016.07.00527613134 Search in Google Scholar

12. Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P: Tumor cell dormancy: threat or opportunity in the fight against cancer. Cancers 2019, 11:1207.10.3390/cancers11081207672180531430951 Search in Google Scholar

13. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133:704-715.10.1016/j.cell.2008.03.027272803218485877 Search in Google Scholar

14. Strati A, Nikolaou M, Georgoulias V, Lianidou ES: Prognostic significance of TWIST1, CD24, CD44, and ALDH1 transcript quantification in EpCAM-positive circulating tumor cells from early stage breast cancer patients. Cells 2019, 8:652.10.3390/cells8070652667922231261917 Search in Google Scholar

15. Rybicka A, Król M; Identification and characterization of cancer stem cells in canine mammary tumors. Acta Veterinaria Scandinavica 2016, 58:1-7.10.1186/s13028-016-0268-6516871427993142 Search in Google Scholar

16. MaroufiNF, Amiri M, Dizaji BF, Vahedian V, Akbarzadeh M, Roshanravan N, Haiaty S, Nouri M, Rashidi MR: Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition (EMT) in breast cancer stem cells. European Journal of Pharmacology 2020, 881:173282.10.1016/j.ejphar.2020.17328232580038 Search in Google Scholar

17. Meuten DJ. Tumors in domestic animals. 5th ed. Wiley Blackwell; 2016. pp. 723-765.10.1002/9781119181200 Search in Google Scholar

18. Clemente M, Perez-Alenza MD, Illera JC, Peña L: Histological, immunohistological, and ultrastructural description of vasculogenic mimicry in canine mammary cancer. Veterinary Pathology 2010, 47:265-274.10.1177/030098580935316720106772 Search in Google Scholar

19. Hujanen R, Almahmoudi R, Karinen S, Nwaru BI, Salo T, Salem A: Vasculogenic mimicry: a promising prognosticator in head and neck squamous cell carcinoma and esophageal cancer? a systematic review and meta-analysis. Cells 2020, 9:507.10.3390/cells9020507707276532102317 Search in Google Scholar

20. Mahooti S, Porter K, Alpaugh ML, Ye Y, Xiao Y, Jones S, Tellez JD, Barsky SH: Breast carcinomatous tumoral emboli can result from encircling lymphovasculogenesis rather than lymphovascular invasion. Oncotarget 2010, 1:131.10.18632/oncotarget.117 Search in Google Scholar

21. Chen J, Chen S, Zhuo L, Zhu Y, Zheng H: Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell death & disease 2020, 11:1-3.10.1038/s41419-020-2361-z706032032144236 Search in Google Scholar

22. Prado MC, Macedo SD, Guiraldelli GG, de Faria Lainetti P, Leis-Filho AF, Kobayashi PE, Laufer-Amorim R, Fonseca-Alves CE: Investigation of the prognostic significance of vasculogenic mimicry and its inhibition by sorafenib in canine mammary gland tumors. Frontiers in oncology 2019, 9:1445.10.3389/fonc.2019.01445693092931921690 Search in Google Scholar

23. Xu J, Zhang Y, Wang Y, Tao X, Cheng L, Wu S, Tao Y: Correlation of KAI1, CD133 and vasculogenic mimicry with the prediction of metastasis and prognosis in hepatocellular carcinoma. International journal of clinical and experimental pathology 2018, 11:3638. Search in Google Scholar

24. Andonegui-Elguera MA, Alfaro-Mora Y, Cáceres-Gutiérrez R, Caro-Sánchez CH, Herrera LA, Díaz-Chávez J: An Overview of Vasculogenic Mimicry in Breast Cancer. Frontiers in oncology 2020, 10.10.3389/fonc.2020.00220705688332175277 Search in Google Scholar

25. Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS: Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Molecular cancer 2017, 16:1-25.10.1186/s12943-016-0577-4528272428137309 Search in Google Scholar

26. Zhang X, Xing C, Guan W, Chen L, Guo K, Yu A, Xie K: Clinicopathological and prognostic significance of nestin expression in patients with breast cancer: a systematic review and meta-analysis. Cancer cell international 2020, 20:1-7.10.1186/s12935-020-01252-5722726432467665 Search in Google Scholar

27. Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q: Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. European journal of cancer 2013, 49:3914-3923.10.1016/j.ejca.2013.07.14823992642 Search in Google Scholar

28. Wu Q, Wang J, Liu Y, Gong X: Epithelial cell adhesion molecule and epithelial-mesenchymal transition are associated with vasculogenic mimicry, poor prognosis, and metastasis of triple negative breast cancer. International journal of clinical and experimental pathology 2019, 12:1678. Search in Google Scholar

29. Li S, Li Q: Cancer stem cells and tumor metastasis. International journal of oncology 2014, 44:1806-12.10.3892/ijo.2014.2362406353624691919 Search in Google Scholar

30. Ahmadi SA, Moinfar M, Moghaddam KG, Bahadori M: Practical application of angiogenesis and vasculogenic mimicry in prostatic adenocarcinoma. Archives of Iranian medicine 2010, 13:498-503. Search in Google Scholar

31. Zhao XL, Du J, Zhang SW, Liu YX, Wang X, Sun BC: A study on vasculogenic mimicry in hepatocellular carcinoma. Zhonghua gan zang bing za zhi= Zhonghua ganzangbing zazhi= Chinese journal of hepatology 2006, 14:41-44. Search in Google Scholar

32. Aleskandarany MA, Sonbul SN, Mukherjee A, Rakha EA: Molecular mechanisms underlying lymphovascular invasion in invasive breast cancer. Pathobiology 2015, 82:113-23.10.1159/00043358326330352 Search in Google Scholar

33. Lavenus SB, Tudor SM, Ullo MF, Vosatka KW, Logue JS: A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments. Journal of Biological Chemistry 2020, 295:6700-6709.10.1074/jbc.RA119.011537721262232234762 Search in Google Scholar

34. Daubriac J, Han S, Grahovac J, Smith E, Hosein A, Buchanan M, Basik M, Boucher Y: The crosstalk between breast carcinoma-associated fibroblasts and cancer cells promotes RhoA-dependent invasion via IGF-1 and PAI-1. Oncotarget 2018, 9:10375.10.18632/oncotarget.23735582821329535813 Search in Google Scholar

35. Vorotnikov AV, Tyurin-Kuzmin PA: Chemotactic signaling in mesenchymal cells compared to amoeboid cells. Genes & diseases 2014, 1:162-73.10.1016/j.gendis.2014.09.006615006830258862 Search in Google Scholar

36. Yang YL, Liu BB, Zhang X, Fu L: Invasive micropapillary carcinoma of the breast: an update. Archives of pathology & laboratory medicine 2016, 140:799-805.10.5858/arpa.2016-0040-RA27472238 Search in Google Scholar

37. Lee JH, Kim JH, Choi JW, Kim YS: The presence of a micropapillary component predicts aggressive behaviour in early and advanced gastric adenocarcinomas. Pathology 2010, 42:560-563.10.3109/00313025.2010.50879020854075 Search in Google Scholar

38. Brown JM, Wasson MC, Marcato P: The missing Lnc: the potential of targeting triple-negative breast cancer and cancer stem cells by inhibiting long non-coding RNAs. Cells 2020, 9:763.10.3390/cells9030763714066232244924 Search in Google Scholar

39. Abadie J, Chocteau F, Loussouarn D, Nguyen F: Proposal for a Histological Staging System of Mammary Carcinomas in Dogs and Cats. Part 1: Canine Mammary Carcinomas. Frontiers in Veterinary Science 2019, 6:388.10.3389/fvets.2019.00388685402131788485 Search in Google Scholar

40. Liao GS, Hsu HM, Chu CH, Hong ZJ, Fu CY, Chou YC, Golshan M, Dai MS, Chen TW, De-Chian C, Tsai WC: Prognostic role of lymphovascular invasion and lymph node status among breast cancer subtypes. Journal of Medical Sciences 2018, 38:54.10.4103/jmedsci.jmedsci_105_17 Search in Google Scholar

41. Shi Y, Su WJ, Dai GZ: Development of a risk-stratification scoring system for predicting lymphovascular invasion in breast cancer. BMC cancer 2020, 20:94.10.1186/s12885-020-6578-0699885132013960 Search in Google Scholar

42. Ragage F, Debled M, MacGrogan G, Brouste V, Desrousseaux M, Soubeyran I, Tunon de Lara C, Mauriac L, de Mascarel I: Is it useful to detect lymphovascular invasion in lymph node-positive patients with primary operable breast cancer?. Cancer 2010, 116:3093-3101.10.1002/cncr.2513720564641 Search in Google Scholar

43. El Abbass KA, Abdellateif MS, Gawish AM, Zekri AR, Malash I, Bahnassy AA: The role of breast cancer stem cells and some related molecular biomarkers in metastatic and nonmetastatic breast cancer. Clinical breast cancer 2020, 20:e373-84.10.1016/j.clbc.2019.11.00832299754 Search in Google Scholar

44. Liu Y, Yang M, Luo J, Zhou H: Radiotherapy targeting cancer stem cells “awakens” them to induce tumour relapse and metastasis in oral cancer. International journal of oral science 2020, 12:1-12.10.1038/s41368-020-00087-0731153132576817 Search in Google Scholar

45. Szczubiał M, Łopuszynski W: Prognostic value of regional lymph node status in canine mammary carcinomas. Veterinary and comparative oncology 2011, 9: 296-303.10.1111/j.1476-5829.2011.00268.x22077411 Search in Google Scholar

46. Wei W, Hu H, Tan H, Chow LW, Yip AY, Loo WT: Relationship of CD44+ CD24-/low breast cancer stem cells and axillary lymph node metastasis. In Journal of translational medicine 2012, 10:1-6.10.1186/1479-5876-10-S1-S6344585823046710 Search in Google Scholar

47. Jones BC, Kelley LC, Loskutov YV, Marinak KM, Kozyreva VK, Smolkin MB, Pugacheva EN: Dual targeting of mesenchymal and amoeboid motility hinders metastatic behavior. Molecular Cancer Research 2017, 15:670-682.10.1158/1541-7786.MCR-16-0411545770528235899 Search in Google Scholar

48. Kariri YA, Aleskandarany MA, Joseph C, Kurozumi S, Mohammed OJ, Toss MS, Green AR, Rakha EA: Molecular Complexity of Lymphovascular Invasion: The Role of Cell Migration in Breast Cancer as a Prototype. Pathobiology 2020, 87:218-231.10.1159/00050833732645698 Search in Google Scholar

49. Cao R, Yuan L, Ma B, Wang G, Qiu W, Tian Y: An EMT-related gene signature for the prognosis of human bladder cancer. Journal of cellular and molecular medicine 2020, 24:605-617.10.1111/jcmm.14767693337231657881 Search in Google Scholar

50. Parvani JG, Schiemann WP: Sox4, EMT programs, and the metastatic progression of breast cancers: mastering the masters of EMT. Breast Cancer Research 2013, 15:1-3.10.1186/bcr3466397907623981787 Search in Google Scholar

51. Garg M: Epithelial, mesenchymal and hybrid epithelial/mesenchymal phenotypes and their clinical relevance in cancer metastasis. Expert Reviews in Molecular Medicine 2017, 19:1-13.10.1017/erm.2017.628322181 Search in Google Scholar

52. Luo A, Xu Y, Li S, Bao J, Lü J, Ding N, Zhao Q, Fu Y, Liu F, Cho WC, Wei X: Cancer stem cell property and gene signature in bone-metastatic Breast Cancer cells. International journal of biological sciences 2020, 16:2580-2594.10.7150/ijbs.45693741542232792858 Search in Google Scholar

53. Velasco-Velázquez MA, Popov VM, Lisanti MP, Pestell RG: The role of breast cancer stem cells in metastasis and therapeutic implications. The American journal of pathology 2011, 179:2-11.10.1016/j.ajpath.2011.03.005312386421640330 Search in Google Scholar

eISSN:
1820-7448
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Veterinary Medicine